OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 2260–2264

Optimal real state quantum cloning machine in cavity quantum electrodynamics

Wei Xiong and Liu Ye  »View Author Affiliations


JOSA B, Vol. 28, Issue 9, pp. 2260-2264 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002260


View Full Text Article

Enhanced HTML    Acrobat PDF (337 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a scheme to realize a special quantum cloning machine (QCM) in cavity quantum electrodynamics (QED). The QCM can copy the information from one atom to another two distant atoms trapped in cavity QED with the help of a single-photon pulse. By choosing different parameters, we can perform an optimal symmetry 1 2 real state QCM and an optimal symmetry 1 3 economical real state QCM.

© 2011 Optical Society of America

OCIS Codes
(200.4740) Optics in computing : Optical processing
(270.5570) Quantum optics : Quantum detectors
(270.5580) Quantum optics : Quantum electrodynamics
(270.6620) Quantum optics : Strong-field processes
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: May 31, 2011
Manuscript Accepted: July 21, 2011
Published: August 30, 2011

Citation
Wei Xiong and Liu Ye, "Optimal real state quantum cloning machine in cavity quantum electrodynamics," J. Opt. Soc. Am. B 28, 2260-2264 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-9-2260


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982). [CrossRef]
  2. D. Dieks, “Communication by EPR devices,” Phys. Lett. A 92, 271–272 (1982). [CrossRef]
  3. V. Bužek and M. Hillery, “Quantum copying: beyond the no-cloning theorem,” Phys. Rev. A 54, 1844–1852 (1996). [CrossRef] [PubMed]
  4. D. Bruß, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302–012309 (2000). [CrossRef]
  5. W. H. Zhang, T. Wu, L. Ye, and J. L. Dai, “Optimal real state cloning in d dimensions,” Phys. Rev. A 75, 044303–044307(2007); [CrossRef]
  6. W. H. Zhang and L. Ye, “Optimal asymmetric phase-covariant and real state cloning in d dimensions,” New J. Phys. 9, 318–332(2007). [CrossRef]
  7. T. Durt and J. Du, “Characterization of low-cost one-to-two qubit cloning,” Phys. Rev. A 69, 062316–062326 (2004). [CrossRef]
  8. Z. Zhao, A. N. Zhang, X. Q. Zhou, Y. A. Chen, C. Y. Lu, A. Karlsson, and J. W. Pan, “Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation,” Phys. Rev. Lett. 95, 030502–030506 (2005). [CrossRef] [PubMed]
  9. H. W. Chen, X. Y. Zhou, D. Suter, and J. F. Du, “Experimental realization of 1→2 asymmetric phase-covariant quantum cloning,” Phys. Rev. A 75, 012317–012322 (2007). [CrossRef]
  10. M. Sabuncu, U. L. Andersen, and G. Leuchs, “Experimental demonstration of continuous variable cloning with phase-conjugate inputs,” Phys. Rev. Lett. 98, 170503–170507 (2007). [CrossRef]
  11. M. Sabuncu, G. Leuchs, and U. L. Andersen, “Experimental continuous-variable cloning of partial quantum information,” Phys. Rev. A 78, 052312–052317 (2008). [CrossRef]
  12. J. Soubusta, L. Bartůšková, A. Černoch, M. Dušek, and J. Fiurášek, “Experimental asymmetric phase-covariant quantum cloning of polarization qubits,” Phys. Rev. A 78, 052323–052330(2008). [CrossRef]
  13. A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002). [CrossRef] [PubMed]
  14. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. 73, 565–582 (2001). [CrossRef]
  15. Y. Xia, J. Song, and H. S. Song, “Linear optical protocol for preparation of N-photon Greenberger—Horne—Zeilinger state with conventional photon detectors,” Appl. Phys. Lett. 92, 021127–021130 (2008). [CrossRef]
  16. C. S. Yu, X. X. Yi, H. S.Song, and D. Mei, “Robust preparation of Greenberger-Horne-Zeilinger and W states of three distant atoms,” Phys. Rev. A 75, 044301–044305 (2007). [CrossRef]
  17. X. M. Lin, Z. W. Zhou, M. Y. Ye, Y. F. Xiao, and G. C. Guo, “One-step implementation of a multiqubit controlled-phase-flip gate,” Phys. Rev. A 73, 012323–012330 (2006). [CrossRef]
  18. Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314–042319 (2004). [CrossRef]
  19. Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304–064308 (2009). [CrossRef]
  20. C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. D. Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316, 1316–1320 (2007). [CrossRef] [PubMed]
  21. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902–127906 (2004). [CrossRef] [PubMed]
  22. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Normal-mode spectroscopy of a single-bound-atom–cavity system,” Phys. Rev. Lett. 94, 033002–033006 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited