OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 2277–2283

Third-order nonlinear optical properties of metallodielectric stacks

Nkorni Katte, Joseph W. Haus, Peter Powers, Andrew Sarangan, Jian Gao, and Michael Scalora  »View Author Affiliations

JOSA B, Vol. 28, Issue 9, pp. 2277-2283 (2011)

View Full Text Article

Enhanced HTML    Acrobat PDF (456 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report simulations of nonlinear optical transmission of an optical beam through heterogeneous metallo dielectric stacks under the action of nonlinear absorption. We use the finite element method (FEM) with two- dimensional transverse effects and transfer matrix method simulation techniques as complementary methods to validate the FEM approach. We find a significant nonlinear absorption effect across spectral regimes where transmission is high. We compare the results with energy and group velocity results, but the enhancement of the nonlinear response is attributed to field confinement in the metal layers.

© 2011 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

ToC Category:
Nonlinear Optics

Original Manuscript: March 30, 2011
Revised Manuscript: July 5, 2011
Manuscript Accepted: July 7, 2011
Published: August 30, 2011

Nkorni Katte, Joseph W. Haus, Peter Powers, Andrew Sarangan, Jian Gao, and Michael Scalora, "Third-order nonlinear optical properties of metallodielectric stacks," J. Opt. Soc. Am. B 28, 2277-2283 (2011)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511–513 (1985). [CrossRef] [PubMed]
  2. M. J. Bloemer, J. W. Haus, and P. R. Ashley, “Degenerate four-wave mixing in colloidal gold as a function of particle size,” J. Opt. Soc. Am. B 7, 790–795 (1990). [CrossRef]
  3. M. J. Bloemer, P. R. Ashley, J. W. Haus, N. Kalyaniwalla, and C. R. Christensen, “Third-Order optical nonlinearities in waveguide geometry,” IEEE J. Quantum Electron. 26, 1075–1080 (1990). [CrossRef]
  4. L. Yang, K. Becker, F. M. Smith, R. H. Magruder III, R. F. Haglund, Jr., L. Yang, R. Dorsinville, R. R. Alfano, and R. A. Zuhr, “Size dependence of the third-order susceptibility of copper nanoclusters investigated by four-wave mixing,” J. Opt. Soc. Am. B 11, 457–461 (1994). [CrossRef]
  5. R. J. Gehr and R. W. Boyd, “Optical properties of nanostructured optical materials,” Chem. Mater. 8, 1807–1819 (1996). [CrossRef]
  6. J. W. Haus, R. Inguva, and C. M. Bowden, “Effective-Medium theory of nonlinear ellipsoidal composites,” Phys. Rev. A 40, 5729–5734 (1989). [CrossRef] [PubMed]
  7. M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  8. R. A. Ganeev, A. I. Ryasnyanskii, M. K. Kodirov, S. R. Kamalov, and T. Usmanov, “Nonlinear optical characteristics of colloidal solutions of metals,” Opt. Spectrosc. 90, 568–573 (2001). [CrossRef]
  9. J. Wei and M. Xiao, “Z-scan model for optical nonlinear nanometric films,” J. Opt. A 10, 115102 (2008). [CrossRef]
  10. D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “Nonlinear optical properties of induced transmission filters,” Opt. Express 18, 19101–19113 (2010). [CrossRef] [PubMed]
  11. D. T. Owens, C. Fuentes-Hernandez, J. M. Hales, J. W. Perry, and B. Kippelen, “A comprehensive analysis of the contributions to the nonlinear optical properties of thin Ag films,” J. Appl. Phys. 107, 123114 (2010). [CrossRef]
  12. T. K. Lee, A. D. Bristow, J. Hubner, and H. M. van Driel, “Linear and nonlinear optical properties of Au-polymer metallodielectric Bragg stacks,” J. Opt. Soc. Am. B 23, 2142–2147 (2006). [CrossRef]
  13. N. N. Lepeshkin, A. Schweinsberg, G. Piredda, R. S. Bennink, and R. W. Boyd, “Enhanced nonlinear optical response of one-dimensional metal-dielectric photonic crystals,” Phys. Rev. Lett. 93, 123902 (2004). [CrossRef] [PubMed]
  14. R. S. Bennink, Y. K. Yoon, R. W. Boyd, and J. E. Sipe, “Accessing the optical nonlinearity of metals with metal-dielectric photonic bandgap structures,” Opt. Lett. 24, 1416–1418 (1999). [CrossRef]
  15. Z.-M. Meng, H.-Y. Liu, Q.-F. Dai, L.-J. Wu, Q. Guo, W. Hu, S.-H. Liu, S. Lan, and V. A. Trofimov, “Dependence of nonlinearity enhancement on power density in photonic crystals characterized by numerical Z-scan experiments based on the finite-difference time-domain technique,” J. Opt. Soc. Am. B 25, 555–563 (2008). [CrossRef]
  16. S. Chen, W. Zang, A. Schülzgen, X. Liu, J. Tian, J. V. Moloney, and N. Peyghambarian, “Modeling of Z-scan characteristics for one-dimensional nonlinear photonic bandgap materials,” Opt. Lett. 34, 3665–3667 (2009). [CrossRef] [PubMed]
  17. N. Katte, J. W. Haus, J. B. Serushema, and M. Scalora, “Super-resolving properties of metallodielectric stacks,” presented at COMSOL Conference, Boston, Massachusetts, USA (7–9 October 2010), http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA540223.
  18. J. W. Haus, M. Scalora, N. Katte, and J. B. Serushema, “Metallodielectrics as metamaterials,” Proc. SPIE 7756, 77560F (2010). [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).
  20. P. Yeh, Optical Waves in Layered Media, J.W.Goodman, ed. (Wiley, 1988).
  21. M. Bertolotti, C. M. Bowden, and C. Sibilia, “Nanoscale linear and nonlinear optics: International School on Quantum Electronics,” in Proceedings of the International School on Quantum Electronics (AIP, 2001).
  22. M. Bloemer, G. D’Aguanno, N. Mattiucci, M. Scalora, and N. Akozbek, “Broadband super-resolving lens with high transparency in the visible range,” Appl. Phys. Lett. 90, 174113 (2007). [CrossRef]
  23. G. D’Aguanno, M. Centini, M. Scalora, C. Sibilia, M. J. Bloemer, C. M. Bowden, J. W. Haus, and M. Bertolotti, “Group velocity, energy velocity, and superluminal propagation in finite photonic bandgap structures,” Phys. Rev. E 63, 036610 (2001). [CrossRef]
  24. C. Fuentes-Hernandez and B. Kippelen, “Nonlinear optical properties of copper-based photonic bandgap structures at the onset of interband transitions” Nonlinear Optics Quantum Optics 40, 69–82 (2010).
  25. C. Fuentes-Hernandez, L. A. Padilha, J. M. Hales, D. Owens, J. Kim, S. Webster, S. R. Marder, J. W. Perry, D. J. Hagan, E. W. Van Stryland, and B. Kippelen, “Nonlinear optical response of transparent metal-dielectric multilayer structures,” in Integrated Photonics and Nanophotonics Research and Applications, OSA Technical Digest (CD) (Optical Society of America, 2009), paper JTuA2.
  26. R. L. Sutherland, D. G. McLean, and S. Kirkpatrick, Handbook of Nonlinear Optics2nd ed. (CRC Press, 2003). [CrossRef]
  27. G. J. Lee, Y. P. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim, and I. Park, “Design, fabrication, linear, and nonlinear optical properties of metal-dielectric photonic bandgap structures,” J. Korean Phys. Soc. 51, 431–437 (2007). [CrossRef]
  28. M. C. Larciprete, C. Sibilia, S. Paoloni, M. Bertolotti, F. Sarto, and M. Scalora, “Accessing the optical limiting properties of metallodielectric photonic bandgap structures,” J. Appl. Phys. 93, 5013–5017 (2003). [CrossRef]
  29. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, A. Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, “Negative refraction and subwavelength focusing in the visible range using transparent metallodielectric stacks,” Opt. Express 15, 508–523(2007). [CrossRef] [PubMed]
  30. D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for super-resolution and superguiding application in the visible and near IR ranges,” Phys. Rev. A 77, 033848 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited