OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 2284–2290

Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers

Tomas Kohoutek, Xin Yan, Teruo W. Shiosaka, Spyros N. Yannopoulos, Athanassios Chrissanthopoulos, Takenobu Suzuki, and Yasutake Ohishi  »View Author Affiliations


JOSA B, Vol. 28, Issue 9, pp. 2284-2290 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002284


View Full Text Article

Enhanced HTML    Acrobat PDF (712 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The off-resonance Raman spectra of As 2 S 3 , GeS 2 , Ge 25 Ga 5 S 70 , Ge 23 As 12 S 65 , Ge 23 Sb 12 S 65 , and Ge 17 Ga 4 Sb 10 S 69 chalcogenide glasses have been recorded and the corresponding Raman gain coefficients have been calculated in order to evaluate the role of Ge, Ga, Sb, and As on a novel Ge 17 Ga 4 Sb 10 S 69 glass proposed for highly nonlinear microstructured optical fibers. We calculated the Raman response functions of As 2 S 3 n 2 = 2.3 × 10 17 m 2 / W , G 2.78 × 10 11 m / W ; and Ge 17 Ga 4 Sb 10 S 69 n 2 = 1.8 × 10 17 m 2 / W , G 1.57 × 10 11 m / W glasses. The supercontinuum generation of a three-air-hole Ge 17 Ga 4 Sb 10 S 69 fiber was simulated, challenging the properties of a similar fiber design made of As 2 S 3 chalcogenide glass. We calculated the zero dispersion wavelengths of Ge 17 Ga 4 Sb 10 S 69 fibers with the core diameters of 1.2, 1.5, and 2.0 μm at λ = 1.48 , 1.66, and 1.75 μm in comparison with λ = 1.60 , 1.87, and 1.98 μm obtained for As 2 S 3 fibers.

© 2011 Optical Society of America

OCIS Codes
(160.2290) Materials : Fiber materials
(160.4330) Materials : Nonlinear optical materials
(170.5660) Medical optics and biotechnology : Raman spectroscopy
(190.2620) Nonlinear optics : Harmonic generation and mixing
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Materials

History
Original Manuscript: June 7, 2011
Manuscript Accepted: July 27, 2011
Published: August 30, 2011

Citation
Tomas Kohoutek, Xin Yan, Teruo W. Shiosaka, Spyros N. Yannopoulos, Athanassios Chrissanthopoulos, Takenobu Suzuki, and Yasutake Ohishi, "Enhanced Raman gain of Ge–Ga–Sb–S chalcogenide glass for highly nonlinear microstructured optical fibers," J. Opt. Soc. Am. B 28, 2284-2290 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-9-2284


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Sanghera, I. D. Aggarwal, L. B. Shaw, L. E. Busse, P. Thielen, V. Nguyen, P. Pureza, S. Bayya, and F. Kung, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 3, 627–640 (2001).
  2. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993). [CrossRef]
  3. A. Zakery, “Low loss waveguides in pulsed laser deposited arsenic sulfide chalcogenide films,” J. Phys. D 35, 2909–2913(2002). [CrossRef]
  4. R. Jose, G. Qin, Y. Arai, and Y. Ohishi, “Enhanced nonlinear susceptibility in TeO2-BaO-SrO-Nb2O5 tellurite glasses,” Jpn. J. Appl. Phys. 46, L651–L653 (2007). [CrossRef]
  5. T. Han, S. Madden, D. Bulla, and B. Luther-Davies, “Low loss chalcogenide glass waveguides by thermal nano-imprint lithography,” Opt. Express 18, 19286–19291 (2010). [CrossRef] [PubMed]
  6. L. Fu, V. G. Ta’eed, E. C. Mägi, I. C. M. Littler, M. D. Pelusi, M. R. E. Lamont, A. Fuerbach, H. C. Nguyen, D. I. Yeom, and B. J. Eggleton, “Highly nonlinear chalcogenide fibers for all-optical signal processing,” Opt. Quantum Electron. 39, 1115–1131(2007). [CrossRef]
  7. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18, 4547–4556 (2010). [CrossRef] [PubMed]
  8. H. Takebe, D. J. Brady, D. Hewak, and K. Morinaga, “Thermal properties of Ga2S3-based glass and their consideration during fiber drawing,” J. Non-Cryst. Solids 258, 239–243 (1999). [CrossRef]
  9. T. Schweizer, D. J. Brady, and D. W. Hewak, “Fabrication and spectroscopy of erbium doped gallium lanthanum sulphide glass fibres for mid-infrared laser applications,” Opt. Express 1, 102–107 (1997). [CrossRef] [PubMed]
  10. J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mat. Res. Bull. 43, 976–982 (2008). [CrossRef]
  11. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006). [CrossRef] [PubMed]
  12. T. Kohoutek, S. Mizuno, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi, “Third-harmonic generation measurement of nonlinear optical susceptibility χ(3) of Ge-Ga-Sb-S chalcogenide glasses proposed for highly nonlinear photonic fibers,” J. Opt. Soc. Am. B 28, 298–305 (2011). [CrossRef]
  13. S. N. Yannopoulos, F. Kyriazis, and I. P. Chochliouros, “Composition-dependent photosensitivity in As-S glasses induced by bandgap light: structural origin by Raman scattering,” Opt. Lett. 36, 534–536 (2011). [CrossRef] [PubMed]
  14. J. H. Song and J. Heo, “Effect of CsBr addition on the emission properties of Tm3+ ion in Ge-Ga-S glass,” J. Mater. Res. 21, 2323–2330 (2006). [CrossRef]
  15. V. Moizan, V. Nazabal, J. Troles, P. Houizot, J. L. Adam, J. L. Doualan, R. Moncorgé, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: Synthesis and rare earth spectroscopy,” Opt. Mater. 31, 39–46 (2008). [CrossRef]
  16. V. G. Truong, A. M. Jurdyc, B. Jacquier, B. S. Ham, A. Q. Le Quang, J. Leperson, V. Nazabal, and J. L. Adam, “Optical properties of thulium-doped chalcogenide glasses and the uncertainty of the calculated radiative lifetimes using the Judd–Ofelt approach,” J. Opt. Soc. Am. B 23, 2588–2596 (2006). [CrossRef]
  17. X. Yan, G. Qin, M. Liao, T. Suzuki, and Y. Ohishi, “Transient Raman response and soliton self-frequency shift in tellurite microstructured fiber,” J. Appl. Phys. 108, 123110(2010). [CrossRef]
  18. H. Kobayashi, H. Kanbara, M. Koga, and K. Kubodera, “Third-order nonlinear optical properties of As2S3 chalcogenide glass,” J. Appl. Phys. 74, 3683–3687 (1993). [CrossRef]
  19. F. L. Galeener and P. N. Sen, “Theory for the first-order vibrational spectra of disordered solids,” Phys. Rev. B 17, 1928–1933(1978). [CrossRef]
  20. A. E. Miller, K. Nassau, K. B. Lyons, and M. E. Lines, “The intensity of Raman scattering in glasses containing heavymetal oxides,” J. Non-Cryst. Solids 99, 289–307 (1988). [CrossRef]
  21. G. S. Qin, R. Jose, and Y. Ohishi, “Stimulated Raman scattering in tellurite glasses as a potential system for slow light generation,” J. Appl. Phys. 101, 093109 (2007). [CrossRef]
  22. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrational-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002). [CrossRef]
  23. J. Hu, C. R. Menyuk, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CMDD2. [PubMed]
  24. S. H. Wemple and M. Di Domenico, “Behavior of the electronic dielectric constant in covalent and ionic materials,” Phys. Rev. B 3, 1338–1351 (1971). [CrossRef]
  25. M. A. Popescu, Non-Crystalline Chalcogenides (Kluwer Academic, 2000).
  26. A. G. Kalampounias, K. S. Andrikopoulos, and S. N. Yannopoulos, “Probing the sulfur polymerization transition in situ with Raman spectroscopy,” J. Chem. Phys. 118, 8460–8467(2003). [CrossRef]
  27. R. Meredith, B. Buchalter, and C. Hanzlik, “Third-order optical susceptibility determination by third-harmonic generation,” J. Chem. Phys. 78, 1533–1542 (1983). [CrossRef]
  28. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, X. Feng, and D. J. Richardson, “Mid-IR supercontinuum generation from non-silica microstructured optical fibers,” IEEE J. Sel. Top. Quantum Electron. 13, 738–749(2007). [CrossRef]
  29. L. B. Shaw, R. R. Rafael, J. Sanghera, and I. Aggarwal, “All-fiber mid-IR supercontinuum source from 1.5 to 5 μm,” Proc. SPIE 7914, 79140P (2011). [CrossRef]
  30. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16, 7161–7168 (2008). [CrossRef] [PubMed]
  31. G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, and Y. Ohishi, “Ultra-broadband supercontinuum generation from ultraviolet to 6.28 μm in a fluoride fiber,” in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2010), paper OTuJ6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited