OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 28, Iss. 9 — Sep. 1, 2011
  • pp: 2291–2300

Electro-optic modulation in horizontally slotted silicon/organic crystal hybrid devices

Harry Figi, Denise H. Bale, Attila Szep, Larry R. Dalton, and Antao Chen  »View Author Affiliations


JOSA B, Vol. 28, Issue 9, pp. 2291-2300 (2011)
http://dx.doi.org/10.1364/JOSAB.28.002291


View Full Text Article

Enhanced HTML    Acrobat PDF (651 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electro-optic modulation is achieved in devices consisting of single-crystalline thin films of N-benzyl-2-methyl- 4-nitroaniline grown from the melt in the slots of phase modulators based on horizontally slotted silicon waveguides. To the best of our knowledge, this is the first experimental realization of an electro-optically active horizontally slotted silicon waveguide and also the first demonstration of organic crystalline materials being implemented into the slotted silicon photonics technology. The experimentally determined half-wave voltage times length product and the losses are estimated to be V π × L = 14.7 ± 2 V · cm and 10 ± 2.4 dB / cm , respectively. The fabrication concept employed here circumvents technological issues present in the context of conventional vertically slotted waveguide structures, since the slots with cross-sectional dimensions of about 1000 nm × 160 nm have been patterned with standard optical photolithography into thermally grown oxide sandwiched between two fusion bonded device silicon layers. In contrast to previously reported vertically slotted silicon waveguides with polymeric slot materials, organic crystalline based devices do not require high-electric-field poling prior to operation and feature an excellent long-term stability of dipole orientation in addition to superior photochemical stability.

© 2011 Optical Society of America

OCIS Codes
(160.3130) Materials : Integrated optics materials
(160.4890) Materials : Organic materials
(230.2090) Optical devices : Electro-optical devices
(130.4815) Integrated optics : Optical switching devices
(250.4110) Optoelectronics : Modulators

ToC Category:
Integrated Optics

History
Original Manuscript: April 13, 2011
Revised Manuscript: August 3, 2011
Manuscript Accepted: August 3, 2011
Published: August 31, 2011

Citation
Harry Figi, Denise H. Bale, Attila Szep, Larry R. Dalton, and Antao Chen, "Electro-optic modulation in horizontally slotted silicon/organic crystal hybrid devices," J. Opt. Soc. Am. B 28, 2291-2300 (2011)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-28-9-2291


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Covega Corporation, “40 Gb/s lithium niobate modulators,” http://www.covega.com/.
  2. Avanex Corporation, “Lithium niobate for 40G modulation,” http://www.avanex.com/.
  3. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005). [CrossRef] [PubMed]
  4. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15, 430–436 (2007). [CrossRef] [PubMed]
  5. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441, 199–202 (2006). [CrossRef] [PubMed]
  6. N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali, and J. B. Khurgin, “Stress-induced χ(2) in silicon—comparison between theoretical and experimental values,” in 6th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2009), pp. 232–234. [CrossRef]
  7. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43, 1196–1197 (2007). [CrossRef]
  8. D. Chen, H. R. Fetterman, A. Chen, W. H. Steier, L. R. Dalton, W. Wang, and Y. Shi, “Demonstration of 110 GHz electro-optic polymer modulators,” Appl. Phys. Lett. 70, 3335–3337 (1997). [CrossRef]
  9. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, “Low (sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape,” Science 288, 119–122 (2000). [CrossRef]
  10. B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, “Electrooptic polymer ring resonator modulation up to 165 GHz,” IEEE J. Sel. Top. Quantum Electron. 13, 104–110 (2007). [CrossRef]
  11. Y. Enami, D. Mathine, C. T. DeRose, R. A. Norwood, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid cross-linkable polymer/sol-gel waveguide modulators with 0.65 V half wave voltage at 1550 nm,” Appl. Phys. Lett. 91, 093505 (2007). [CrossRef]
  12. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004). [CrossRef] [PubMed]
  13. J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, “High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide,” Opt. Express 16, 4177–4191 (2008). [CrossRef] [PubMed]
  14. J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, and C. Koos, “Silicon organic hybrid technology—A platform for practical nonlinear optics,” Proc. IEEE 97, 1304–1316 (2009). [CrossRef]
  15. M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, “Towards a millivolt optical modulator with nano-slot waveguides,” Opt. Express 15, 8401–8410 (2007). [CrossRef] [PubMed]
  16. T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T.-D. Kim, L. Dalton, A. Jen, M. Hochberg, and A. Scherer, “Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25 V,” Appl. Phys. Lett. 92, 163303 (2008). [CrossRef]
  17. L. Alloatti, D. Korn, D. Hillerkuss, T. Vallaitis, J. Li, R. Bonk, R. Palmer, T. Schellinger, C. Koos, W. Freude, J. Leuthold, M. Fournier, J. Fedeli, A. Barklund, R. Dinu, J. Wieland, W. Bogaerts, P. Dumon, and R. Baets, “Silicon high-speed electro-optic modulator,” in 7th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2010), pp. 195–197. [CrossRef]
  18. R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J.-M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, “Demonstration of a low VπL modulator with GHz bandwidth based on electro-optic polymer-clad silicon slot waveguides,” Opt. Express 18, 15618–15623 (2010). [CrossRef] [PubMed]
  19. L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, and J. Leuthold, “42.7 Gbit/s electro-optic modulator in silicon technology,” Opt. Express 19, 11841–11851 (2011). [CrossRef] [PubMed]
  20. B. Qi, P. Yu, Y. Li, Y. Hao, Q. Zhou, X. Jiang, and J. Yang, “Ultracompact electrooptic silicon modulator with horizontal photonic crystal slotted slab,” IEEE Photon. Technol. Lett. 22, 724–726 (2010). [CrossRef]
  21. X. Wang, C.-Y. Lin, S. Chakravarty, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Effective in-device r33 of 735 pm/V on electro-optic polymer infiltrated silicon photonic crystal slot waveguides,” Opt. Lett. 36, 882–884 (2011). [CrossRef] [PubMed]
  22. C.-Y. Lin, X. Wang, S. Chakravarty, B. S. Lee, W. Lai, J. Luo, A. K.-Y. Jen, and R. T. Chen, “Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement,” Appl. Phys. Lett. 97, 093304 (2010). [CrossRef]
  23. M. Gould, T. Baehr-Jones, R. Ding, S. Huang, J. Luo, A. K.-Y. Jen, J.-M. Fedeli, M. Fournier, and M. Hochberg, “Silicon-polymer hybrid slot waveguide ring-resonator modulator,” Opt. Express 19, 3952–3961 (2011). [CrossRef] [PubMed]
  24. L. R. Dalton, P. A. Sullivan, and D. H. Bale, “Electric field poled organic electro-optic materials: State of the art and future prospects,” Chem. Rev. 110, 25–55 (2010). [CrossRef]
  25. D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinšek, and P. Günter, “Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials,” J. Chem. Phys. 128, 124713 (2008). [CrossRef] [PubMed]
  26. H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic single-crystalline organic waveguides and nanowires grown from the melt,” Opt. Express 16, 11310–11327(2008). [CrossRef] [PubMed]
  27. H. Figi, M. Jazbinšek, C. Hunziker, M. Koechlin, and P. Günter, “Electro-optic tuning and modulation of single-crystalline organic microring resonators,” J. Opt. Soc. Am. B 26, 1103–1110(2009). [CrossRef]
  28. H. Hashimoto, Y. Okada, H. Fujimura, M. Morioka, O. Sugihara, N. Okamoto, and R. Matsushima, “Second-harmonic generation from single crystals of N-substituted 4-nitroanilines,” Jpn. J. Appl. Phys. 36, 6754–6760 (1997). [CrossRef]
  29. H. Hashimoto, H. Takahashi, T. Yamada, K. Kuroyanagi, and T. Kobayashi, “Characteristics of the terahertz radiation from single crystals of N-substituted 2-methyl-4-nitroaniline,” J. Phys. Condens. Matter 13, L529–L537 (2001). [CrossRef]
  30. U. Meier, M. Bösch, C. Bosshard, F. Pan, and P. Günter, “Parametric interactions in the organic salt 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate at telecommunicationwavelengths,” J. Appl. Phys. 83, 3486–3489 (1998). [CrossRef]
  31. M. Fujiwara, K. Yanagi, M. Maruyama, M. Sugisaki, K. Kuroyanagi, H. Takahashi, S. Aoshima, Y. Tsuchiya, A. Gall, and H. Hashimoto, “Second order nonlinear optical properties of the single crystal of N-benzyl 2-methyl-4-nitroaniline: anomalous enhancement of the d333 component and its possible origin,” Jpn. J. Appl. Phys. 45, 8676–8685 (2006). [CrossRef]
  32. M. Fujiwara, M. Maruyama, M. Sugisaki, H. Takahashi, S. Aoshima, R. J. Cogdell, and H. Hashimoto, “Determination of the d-tensor components of a single crystal of N-benzyl-2-methyl-4-nitroaniline,” Jpn. J. Appl. Phys. 46, 1528–1530(2007). [CrossRef]
  33. FIMMWAVE, Photon Design, 34 Leopold Street, Oxford, OX41TW, UK, http://www.photond.com/.
  34. Q.-Y. Tong, G. Fountain, and P. Enquist, “Room temperature SiO2/SiO2 covalent bonding,” Appl. Phys. Lett. 89, 042110(2006). [CrossRef]
  35. CrystalMaker Software Limited, Begbroke Science Park, Sandy Lane, Yarnton, Oxfordshire, OX5 1PF, UK, http://www.crystalmaker.com/.
  36. H. Porte, J.-P. Goedgebuer, R. Ferriere, and N. Fort, “Integrated TE-TM mode converter on Y-cut Z-propagating LiNbO3 with an electrooptic phase matching for coherence multiplexing,” IEEE J. Quantum Electron. 25, 1760–1762(1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited