OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 109–117

Determination of guided-mode resonances in photonic crystal slabs

Pierre Pottier, Lina Shi, and Yves-Alain Peter  »View Author Affiliations

JOSA B, Vol. 29, Issue 1, pp. 109-117 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1707 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a design and analysis study of guided-mode resonances in photonic crystal slabs. Three-dimensional finite-difference time-domain (FDTD) simulations are used in parallel with a simplified model of guided-mode resonances to produce a representation of their evolution with structural parameters. From the analysis of the effective medium behavior of the system, we propose a simplified method able to predict the first guided-mode resonances at normal incidence with a good accuracy ( 1 % ) for holes with radius-to-period ratio smaller than 0.3 for the transverse magnetic polarization created internally. A substantial gain of time is, therefore, provided compared to FDTD (from the hours level to the seconds level). We also focus on two other important parameters, the quality factor and asymmetry of peaks, and present a way to design symmetric peaks with low sidebands.

© 2011 Optical Society of America

OCIS Codes
(230.4040) Optical devices : Mirrors
(260.5740) Physical optics : Resonance
(050.2065) Diffraction and gratings : Effective medium theory
(230.5298) Optical devices : Photonic crystals
(310.6805) Thin films : Theory and design
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

Original Manuscript: September 9, 2011
Revised Manuscript: October 9, 2011
Manuscript Accepted: October 9, 2011
Published: December 9, 2011

Pierre Pottier, Lina Shi, and Yves-Alain Peter, "Determination of guided-mode resonances in photonic crystal slabs," J. Opt. Soc. Am. B 29, 109-117 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18, 269–275 (1902). [CrossRef]
  2. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  3. M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R.Petit, ed. (Springer-Verlag, 1980), pp. 123–157. [CrossRef]
  4. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006). [CrossRef]
  5. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992). [CrossRef]
  6. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617–1626 (1997). [CrossRef]
  7. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004). [CrossRef]
  8. V. N. Astratov, R. M. Stevenson, I. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Heavy photon dispersions in photonic crystal waveguides,” Appl. Phys. Lett. 77, 178–180 (2000). [CrossRef]
  9. W. Suh and S. Fan, “All-pass transmission or flattop reflection filters using a single photonic crystal slab,” Appl. Phys. Lett. 84, 4905–4907 (2004). [CrossRef]
  10. C. Kappel, A. Selle, M. A. Bader, and G. Marowsky, “Double grating waveguide structures: 350-fold enhancement of two-photon fluorescence applying ultrashort pulses,” Sens. Actuators B 107, 135–139 (2005). [CrossRef]
  11. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol. 2, 515–520 (2007). [CrossRef]
  12. L. Shi, P. Pottier, M. Skorobogatiy, and Y.-A. Peter, “Tunable structures comprising two photonic crystal slabs—optical study in view of multi-analyte enhanced detection,” Opt. Express 17, 10623–10632 (2009). [CrossRef] [PubMed]
  13. S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, C. Seassal, P. Rojo-Romeo, P. Regreny, M. Garrigues, and P. Viktorovitch, “Photonic crystal-based MOEMS devices,” IEEE J. Sel. Top. Quantum Electron. 13, 244–252 (2007). [CrossRef]
  14. Y. Kanamori, T. Kitani, and K. Hane, “Control of guided resonance in a photonic crystal slab using microelectromechanical actuators,” Appl. Phys. Lett. 90, 031911 (2007). [CrossRef]
  15. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003). [CrossRef]
  16. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569–572 (2003). [CrossRef]
  17. S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21, 549–551 (1996). [CrossRef] [PubMed]
  18. M. S. Sodha and A. K. Ghatak, Inhomogeneous Optical Waveguides (Plenum, 1977), pp. 5–29.
  19. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics(Wiley, 1991), pp. 238–271. [CrossRef]
  20. S. G. Johnson, “Meep,” http://ab-initio.mit.edu/wiki/index.php/Meep.
  21. S. G. Johnson, “Meep Tutorial/Band diagram, resonant modes, and transmission in a holey waveguide,” http://ab-initio.mit.edu/wiki/index.php/Meep_Tutorial/Band_diagram%2C_resonant_modes%2C_and_transmission_in_a_holey_waveguide.
  22. S. S. Wang and R. Magnusson, “Design of waveguide-grating filters with symmetrical line shapes and low sidebands,” Opt. Lett. 19, 919–921 (1994). [CrossRef] [PubMed]
  23. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999), pp. 790–852.
  24. S. R. Coriell and J. L. Jackson, “Bounds on transport coefficients of two-phase materials,” J. Appl. Phys. 39, 4733–4736 (1968). [CrossRef]
  25. P. Lalanne and M. Hutley, “Artificial media optical properties—subwavelength scale,” in Encyclopedia of Optical Engineering, R.Driggers, ed. (Marcel Dekker, 2003), Vol.  1, pp. 62–71.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited