OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 130–137

Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders

Thomas Søndergaard, Sergey I. Bozhevolnyi, Jonas Beermann, Sergey M. Novikov, Eloïse Devaux, and Thomas W. Ebbesen  »View Author Affiliations

JOSA B, Vol. 29, Issue 1, pp. 130-137 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1078 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Transmission through thin metal films with a periodic arrangement of tapered slits is considered. Transmission maps covering a wide range of periods, film thicknesses, and taper angles are presented. The maps show resonant transmission when fundamental and higher-order slit resonances are excited. A study of the effect on transmission of different combinations of available transmission and reflection diffraction orders show optimum total transmission when only the fundamental reflection order and higher transmission diffraction orders are available. The optimum taper angle is shown to be in the range of 6 ° 10 ° . Both theory and experiments show split-peak spectra and shifted-peak spectra due to interference between a slit resonance and Rayleigh–Wood anomalies.

© 2011 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.2770) Diffraction and gratings : Gratings
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Diffraction and Gratings

Original Manuscript: October 11, 2011
Manuscript Accepted: October 18, 2011
Published: December 9, 2011

Thomas Søndergaard, Sergey I. Bozhevolnyi, Jonas Beermann, Sergey M. Novikov, Eloïse Devaux, and Thomas W. Ebbesen, "Extraordinary optical transmission with tapered slits: effect of higher diffraction and slit resonance orders," J. Opt. Soc. Am. B 29, 130-137 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79, 1267–1290 (2007). [CrossRef]
  3. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  4. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef] [PubMed]
  5. S. Collin, G. Vincent, R. Haïder, N. Bardou, S. Rommeluére, and J.-L. Pelouard, “Nearly perfect Fano transmission resonances through nanoslits drilled in a metallic membrane,” Phys. Rev. Lett. 104, 027401 (2010). [CrossRef] [PubMed]
  6. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009). [CrossRef]
  7. E. Laux, C. Genet, T. Skauli, and T. W. Ebbesen, “Plasmon photon sorters for spectral and polarimetric imaging,” Nat. Photon. 2, 161–164 (2008). [CrossRef]
  8. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  9. P. Lalanne, J. P. Hugonin, S. Astilean, M. Palamaru, and K. D. Møller, “One-mode model and Airy-like formulae for one-dimensional metallic gratings,” J. Opt. A 2, 48–51 (2000). [CrossRef]
  10. H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick, “Selective transmission through very deep zero-order metallic gratings at microwave frequencies,” Appl. Phys. Lett. 77, 2789–2791 (2000). [CrossRef]
  11. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Strong discontinuities in the complex photonic band structure of transmission metallic gratings,” Phys. Rev. B 63, 033107 (2001). [CrossRef]
  12. F. J. García-Vidal and L. Martín-Moreno, “Transmission and focusing of light in one-dimensional periodically nanostructured metals,” Phys. Rev. B 66, 155412 (2002). [CrossRef]
  13. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A 4, S154–S160 (2002). [CrossRef]
  14. P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, “Perturbative approach for surface plasmon effects on flat interfaces periodically corrugated by subwavelength apertures,” Phys. Rev. B 68, 125404 (2003). [CrossRef]
  15. D. Pacifici, H. J. Lezec, H. Atwater, and J. Weiner, “Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: role of surface interference and local coupling between adjacent slits,” Phys. Rev. B 77, 115411(2008). [CrossRef]
  16. A. Barbara, P. Quémerais, E. Bustarrat, and T. Lopez-Rioz, “Optical transmission through subwavelength metallic gratings,” Phys. Rev. B 66, 161403 (2002). [CrossRef]
  17. Z. Sun, Y. Suk, and H. K. Kim, “Role of surface plasmons in the optical interaction in metallic gratings with narrow slits,” Appl. Phys. Lett. 83, 3021–3023 (2003). [CrossRef]
  18. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280, 10–15 (2007). [CrossRef]
  19. C. Billaudeau, S. Collin, F. Pardo, N. Bardou, and J.-L. Pelouard, “Tailoring radiative and non-radiative losses of thin nanostructured plasmonic waveguides,” Opt. Express 17, 3490–3499(2009). [CrossRef] [PubMed]
  20. D. De Ceglia, M. A. Vincenti, M. Scalora, N. Akozbek, and M. J. Bloemer, “Plasmonic band edge effects on the transmission properties of metal gratings,” AIP Advances 1, 032151(2011). [CrossRef]
  21. U. Schröter and D. Heitmann, “Surface-plasmon-enhanced transmission through metallic gratings,” Phys. Rev. B 58, 15419–15421 (1998). [CrossRef]
  22. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys. 87, 3785–3788 (2000). [CrossRef]
  23. M. I. Stockmann, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef]
  24. M. W. Vogel and D. K. Gramotnev, “Shape effects in tapered metal rods during adiabatic nanofocusing of plasmons,” J. Appl. Phys. 107, 044303 (2010). [CrossRef]
  25. K. C. Vernon, D. K. Gramotnev, and D. F. P. Pile, “Adiabatic nanofocusing of plasmons by a sharp metal wedge on a dielectric substrate,” J. Appl. Phys. 101, 104312 (2007). [CrossRef]
  26. D. K. Gramotnev, “Adiabatic nanofocusing of plasmons by sharp metallic grooves: geometrical optics approach,” J. Appl. Phys. 98, 104302 (2005). [CrossRef]
  27. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008). [CrossRef] [PubMed]
  28. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett. 7, 2784–2788 (2007). [CrossRef] [PubMed]
  29. E. Verhagen, M. Spasenović, A. Polman, and L. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett. 102, 203904 (2009). [CrossRef] [PubMed]
  30. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express 17, 7519–7524 (2009). [CrossRef] [PubMed]
  31. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbesen, “Nanofocusing with channel plasmon polaritons,” Nano Lett. 9, 1278–1282(2009). [CrossRef] [PubMed]
  32. N. C. Lindquist, P. Nagpal, A. Lesuffleur, D. J. Norris, and S.-H. Oh, “Three-dimensional plasmonic nanofocusing,” Nano Lett. 10, 1369–1373 (2010). [CrossRef] [PubMed]
  33. T. Søndergaard, S. I. Bozhevolnyi, S. M. Novikov, J. Beermann, E. Devaux, and T. W. Ebbesen, “Extraordinary optical transmission enhanced by nanofocusing,” Nano Lett. 10, 3123–3128(2010). [CrossRef] [PubMed]
  34. J. Beermann, T. Søndergaard, S. M. Novikov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, “Field enhancement and extraordinary optical transmission by tapered periodic slits in gold films,” New J. Phys. 13, 063029 (2011). [CrossRef]
  35. T. Søndergaard, S. I. Bozhevolnyi, J. Beermann, S. M. Novikov, E. Devaux, and T. W. Ebbesen, “Resonant plasmon nanofocusing by closed tapered gaps,” Nano Lett. 10, 291–295 (2010). [CrossRef]
  36. T. Søndergaard and S. I. Bozhevolnyi, “Surface-plasmon polariton resonances in triangular-groove metal gratings,” Phys. Rev. B 80, 195407 (2009). [CrossRef]
  37. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  38. S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676–2684 (2008). [CrossRef] [PubMed]
  39. U. Fano, “The theory of anomalous diffraction gratings,” J. Opt. Soc. Am. 31, 213–222 (1941). [CrossRef]
  40. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297(1965). [CrossRef]
  41. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited