OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 15–22

Statistical properties of the squeezing-enhanced thermal state

Shuai Wang and Hong-yi Fan  »View Author Affiliations

JOSA B, Vol. 29, Issue 1, pp. 15-22 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (568 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We introduce a new (to our best knowledge) type of squeezing-enhanced thermal states (SETS) that is generated by operating a new two-parameter generalized squeezing operator on a thermal (chaotic) field. By using the operator’s Weyl-ordering invariance under the similarity transformation and the Weyl correspondence scheme, we derive the normally ordered form of the density operator of SETS. Based on it, we study the resulting squeezing effects of the SETS and investigate its statistical properties by the second-order correlation function, photon-number distribution, and the Wigner function. Compared with the usual squeezed thermal state, SETS exhibits stronger squeezing and some new statistical properties. We find that the effect of the new type of squeezing operator is rotated squeezing.

© 2011 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Quantum Optics

Original Manuscript: July 25, 2011
Revised Manuscript: September 13, 2011
Manuscript Accepted: October 19, 2011
Published: December 9, 2011

Shuai Wang and Hong-yi Fan, "Statistical properties of the squeezing-enhanced thermal state," J. Opt. Soc. Am. B 29, 15-22 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  3. C. C. Gerry and P. L. Knight, Introductory Quantum Optics (Cambridge University, 2004). [CrossRef]
  4. S. L. Braunstein and A. K. Pati, Quantum Information with Continuous Variables (Kluwer Academic, 2003).
  5. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 2000).
  6. S. L. Braunstein and P. Van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005). [CrossRef]
  7. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1973).
  8. D. Stoler, “Equivalence classes of minimum uncertainty packets,” Phys. Rev. D 1, 3217–3219 (1970). [CrossRef]
  9. V. V. Dodonov, “Review article: ‘nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years,” J. Opt. B 4, R1–R33 (2002). [CrossRef]
  10. H. Fearn and M. J. Collett, “Representations of squeezed states with thermal noise,” J. Mod. Opt. 35, 553–564 (1988). [CrossRef]
  11. M. S. Kim, F. A. M. de Oliveira, and P. L. Knight, “Properties of squeezed number states and squeezed thermal states,” Phys. Rev. A 40, 2494–2053 (1989). [CrossRef] [PubMed]
  12. P. Marian, “Higher-order squeezing and photon statistics for squeezed thermal states,” Phys. Rev. A 45, 2044–2051 (1992). [CrossRef] [PubMed]
  13. P. Marian and T. A. Marian, “Squeezed states with thermal noise. I. photon-number statistics,” Phys. Rev. A 47, 4474–4486 (1993). [CrossRef] [PubMed]
  14. H. Ezawa, A. Mann, K. Nakamura, and M. Revzen, “Characterization of thermal coherent and thermal squeezed states,” Ann. Phys. 209, 216–230 (1991). [CrossRef]
  15. Z. H. Musslimani and Y. Ben-Ayreh, “Quantum phase distribution of thermal phase-squeezed states,” Phys. Rev. A 57, 1451–1453 (1998). [CrossRef]
  16. M. S. Kim, W. Son, V. Buzek, and P. L. Knight, “Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement,” Phys. Rev. A 65, 032323 (2002). [CrossRef]
  17. N. Takei, T. Aoki, S. Koike, K. I. Yoshino, K. Wakui, H. Yonezawa, T. Hiraoka, J. Mizuno, M. Takeoka, M. Ban, and A. Furusawa, “Experimental demonstration of quantum teleportation of a squeezed state,” Phys. Rev. A 72, 042304 (2005). [CrossRef]
  18. G. Adesso and G. Chiribella, “Quantum benchmark for teleportation and storage of squeezed states,” Phys. Rev. Lett. 100, 170503 (2008). [CrossRef] [PubMed]
  19. M. Aspachs, J. Calsamiglia, R. Muñoz-Tapia, and E. Bagan, “Phase estimation for thermal Gaussian states,” Phys. Rev. A 79, 033834 (2009). [CrossRef]
  20. S. Wang, X. X. Xu, H. C. Yuan, L. Y. Hu, and H. Y. Fan, “Coherent operation of photon subtraction and addition for squeezed thermal states: analysis of nonclassicality and decoherence,” J. Opt. Soc. Am. B 28, 2149–2158 (2011). [CrossRef]
  21. S. L. Braunstein and H. J. Kimble, “Dense coding for continuous variables,” Phys. Rev. A 61, 042302 (2000). [CrossRef]
  22. H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Gobler, K. Danzmann, and R. Schnabel, “Observation of squeezed light with 10 dB quantum-noise reduction,” Phys. Rev. Lett. 100, 033602 (2008). [CrossRef] [PubMed]
  23. M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel, “Observation of squeezed states with strong photon-number oscillations,” Phys. Rev. A 81, 013814 (2010). [CrossRef]
  24. H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226–2243 (1976). [CrossRef]
  25. U. Leonhardt, “Quantum theory of light” in Measuring the Quantum State of Light (Cambridge University, 1997), Chap. 2.
  26. S. Wang, X. Y. Zhang, and H. Q. Li, “Radiation field eigenstates and its unitary equivalence to coordinate eigenstates,” Opt. Commun. 283, 2716–2718 (2010). [CrossRef]
  27. M. O. Scully and M. S. Zubairy, “Squeezing via nonlinear optical processes,” in Quantum Optics (Cambridge University, 1997), Chap. 16.
  28. B. Yurke and D. Stoler, “Generating quantum mechanical superpositions of macroscopically distinguishable states via amplitude dispersion,” Phys. Rev. Lett. 57, 13–16 (1986). [CrossRef] [PubMed]
  29. G. J. Milburn, “Quantum and classical Liouville dynamics of the anharmonic oscillator,” Phys. Rev. A 33, 674–685 (1986). [CrossRef] [PubMed]
  30. W. P. Schleich, Quantum Optics in Phase Space (Wiley-VCH, 2001). [CrossRef]
  31. P. Blasiak, A. Horzela, K. A. Penson, A. I. Solomon, and G. H. E. Duchamp, “Combinatorics and Boson normal ordering: a gentle introduction,” Am. J. Phys. 75, 639–646 (2007). [CrossRef]
  32. H. Weyl, The Classical Groups (Princeton University, 1953).
  33. H. Y. Fan and H. R. Zaidi, “Application of IWOP technique to the generalized Weyl correspondence,” Phys. Lett. A 124, 303–307(1987). [CrossRef]
  34. H. Y. Fan, “Newton–Leibniz integration for ket–bra operators in quantum mechanics and derivation of entangled state representations,” Ann. Phys. 321, 480–494 (2006). [CrossRef]
  35. H. Y. Fan, “Newton–Leibniz integration for ket–bra operators in quantum mechanics (IV)—integrations within Weyl ordered product of operators and their applications,” Ann. Phys. 323, 500–526 (2008). [CrossRef]
  36. H. Y. Fan and Y. Fan, “Weyl ordering for entangled state representation,” Int. J. Mod. Phys. A 17, 701–708 (2002). [CrossRef]
  37. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963). [CrossRef]
  38. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963). [CrossRef]
  39. R. R. Puri, Mathematical Methods of Quantum Optics (Springer-Verlag, 2001).
  40. C. K. Hong and L. Mandel, “Generation of higher-order squeezing of quantum electromagnetic fields,” Phys. Rev. A 32, 974–982 (1985). [CrossRef] [PubMed]
  41. J. Lee, J. Kim, and H. Nha, “Demonstrating higher-order nonclassical effects by photon-added classical states: realistic schemes,” J. Opt. Soc. Am. B 26, 1363–1369 (2009). [CrossRef]
  42. P. Lambropoulos and D. Petrosyan, Fundamentals of Quantum Optics and Quantum Information (Springer-Verlag, 2007).
  43. A. Ekert and K. Rzażewski, “Second harmonic generation and statistical properties of light,” Opt. Commun. 65, 225–228(1988). [CrossRef]
  44. J. Janszky and Y. Yushin, “Many-photon processes with the participation of squeezed light,” Phys. Rev. A 36, 1288–1292 (1987). [CrossRef] [PubMed]
  45. H. Y. Fan, L. Y. Hu, and X. X. Xu, “Legendre polynomials as the normalization of photon-subtracted squeezed states,” Mod. Phys. Lett. A 24, 1597–1603 (2009). [CrossRef]
  46. L. Y. Hu and H. Y. Fan, “Statistical properties of photon-subtracted squeezed vacuum in thermal environment,” J. Opt. Soc. Am. B 25, 1955–1964 (2008). [CrossRef]
  47. E. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited