OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 161–169

Sinusoidally chirped fiber Bragg grating for mode-locked application

Nuran Dogru  »View Author Affiliations


JOSA B, Vol. 29, Issue 1, pp. 161-169 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000161


View Full Text Article

Enhanced HTML    Acrobat PDF (920 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this study, a mode-locked hybrid soliton pulse source (HSPS) utilizing sinusoidal chirped fiber Bragg grating (FBG) is reported for the first time, using the time-domain solution of coupled wave equations and rate equations. The sinusoidal chirped FBG provides a wider bandwidth by adjusting the reversion coefficient or chirp rate even if the FBG length is short. Numerical results also indicate that an HSPS-utilized sinusoidal chirped FBG produces shorter pulses in the 25 72 ps range, whereas the pulses range from 31 to 97 ps for a linearly chirped tanh apodized grating, and from 30 to 80 ps for a linearly chirped Gaussian apodized grating, along with an increase in the mode-locking frequency range.

© 2012 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.4050) Lasers and laser optics : Mode-locked lasers
(060.3735) Fiber optics and optical communications : Fiber Bragg gratings

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 29, 2011
Revised Manuscript: November 1, 2011
Manuscript Accepted: November 1, 2011
Published: December 16, 2011

Citation
Nuran Dogru, "Sinusoidally chirped fiber Bragg grating for mode-locked application," J. Opt. Soc. Am. B 29, 161-169 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-1-161


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Merghem, A. Akrout, A. Martinez, G. Moreau, J. P. Tourrenc, F. Lelarge, F. Van Dijk, G. H. Duan, G. Aubin, and A. Ramdane, “Short pulse generation using a passively mode-locked single InGaAsP/InP quantum well laser,” Opt. Express 16, 10675–10683 (2008). [CrossRef]
  2. G. A. Keeler, B. E. Nelson, D. Agarwal, C. Debaes, N. C. Helman, A. Bhatnagar, and D. A. Miller, “The benefits of ultrashort optical pulses in optically interconnected systems,” IEEE J. Quantum Electron. 9, 477–485 (2003). [CrossRef]
  3. T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi, “An uncooled external cavity diode laser for coarse-WDM access network systems,” IEEE Photon. Technol. Lett. 14, 1001–1003 (2002). [CrossRef]
  4. W. Cheng, S. Chiu, C. Y. Hong, and H. W. Chang, “Spectral characteristics for fiber grating external cavity lasers,” Opt. Quantum Electron. 32, 339–348 (2000). [CrossRef]
  5. V. Mikhailov, P. Bayvel, R. Wyatt, and I. Lealman, “Fiber grating laser-based RZ pulse source for 40 Gbit/s OTDM transmission systems,” Electron. Lett. 37, 909–910 (2001). [CrossRef]
  6. D. J. L. Birkin, E. U Rafailov, W. Sibbett, L. Zhang, Y. Liu, and I. Bennion, “Near-transform-limited picosecond pulses from a gain-switched InGaAs diode laser with fiber Bragg gratings,” Appl. Phys. Lett. 79, 151–152 (2001). [CrossRef]
  7. G. Xia, Z. Wu, and H. Zhou, “Influence of external cavity length on lasing wavelength variation of fiber grating semiconductor laser with ambient temperature,” Optik, 114, 247–250 (2003). [CrossRef]
  8. F. Ouellette, “Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides,” Opt. Lett. 12, 847–849 (1987). [CrossRef]
  9. P. A. Morton, V. Mizrahi, P. A. Andrekson, T. Tanbun-Ek, R. A. Logan, P. Lemaire, D. L. Coblentz, A. M. Sergent, K. W. Wecht, and P. F. Sciortino, “Mode-locked hybrid soliton pulse source with extremely wide operating frequency range,” IEEE Photon. Technol. Lett. 5, 28–31 (1993). [CrossRef]
  10. N. Dogru, “Effect of grating parameters on mode-locked external cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 644–652 (2009). [CrossRef]
  11. N. Dogru, “Mode-locked performance of hybrid soliton pulse source utilizing fiber grating external cavity lasers,” Opt. Commun. 260, 227–231 (2006). [CrossRef]
  12. N. Dogru, “Extremely increasing the operating frequency range of hybrid soliton pulse source,” Chin. Phys. Lett. 23, 838–841 (2006). [CrossRef]
  13. M. S. Ozyazici, P. A. Morton, L. M. Zhang, and V. Mizrahi, “Theoretical model of the hybrid soliton pulse source,” IEEE Photon. Technol. Lett. 7, 1142–1144 (1995). [CrossRef]
  14. M. K. Durkin, R. Feced, C. Ramirez, and M. N. Zervas, “Advanced fibre Bragg gratings for high performance dispersion compensation in DWDM systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 1, paper TuH4-1.
  15. Z. X. Qin, Q. K. Zeng, D. J. Feng, Y. Xiang, L. Ding, G. Y. Kai, Z. G. Liu, S. Z. Yuan, X. Y. Dong, N. Liu, C. J. Liao, and S. H. Liu, “Numerical study of the apodization profile functions, optimal profiles and lengths of a linearly chirped fiber Bragg grating,” Chin. Phys. Lett. 18, 239–241 (2001). [CrossRef]
  16. A. Carballar, M. A. Myriel, and J. Azana, “Fiber grating filter for WDM systems: An improved design,” IEEE Photon. Technol. Lett. 11, 694–696 (1999). [CrossRef]
  17. M. Ibsen, R. Feced, P. Petropoulos, and M. N. Zervas, “99.9% Reflectivity dispersion-less square-filter fibre Bragg gratings for high speed DWDM Networks,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2000), Vol. 4, paper PD21-1.
  18. Y. Rau, T. Zhu, Z. L. Ran, and J. Jiang, “An all-fibre dynamic gain equalizer based on a novel long-period fibre grating written by high frequency CO2 laser pulses,” Chin. Phys. Lett. 19, 1822–1824 (2002). [CrossRef]
  19. L. Zhang and C. Yang, “Sinusoidally chirped fiber Bragg gratings,” Chin. Phys. Lett. 20, 1293–1295 (2003). [CrossRef]
  20. L. Zhang and C. Yang, “Improving the performance of fiber gratings with sinusoidal chirps,” Appl. Opt. 42, 2181–2187 (2003). [CrossRef]
  21. L. Zhang, C. Yang, Y. Yan, G. Jin, and M. Xiao, “Sinusoidally chirped fiber Bragg grating for DWDM applications,“ in Proceedings of IEEE Conference on Lasers and Electro-optics (CLEO) (IEEE, 2002), Vol. 4, p. 195.
  22. H. Kogelnik and C. V. Shank, “Coupled wave theory of distributed feedback lasers,” J. Appl. Phys. 43, 2327–2335 (1972). [CrossRef]
  23. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997). [CrossRef]
  24. P. A. Morton, V. Mizrahi, G. Harvey, L. Mollenauer, T. Tanbun-Ek, R. A. Logan, H. M. Presby, T. Erdogan, A. M. Sergent, and K. W. Wecht, “Packaged hybrid soliton pulse source results, and 270  Tbit/km/s soliton transmission,” IEEE Photon. Technol. Lett. 7, 111–113 (1995). [CrossRef]
  25. P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, T. Erdogan, P. F. Sciortino, A. M. Sergent, and K. W. Wecht, “High-power mode-locked hybrid soliton pulse source using two-section laser diodes,” Opt. Lett. 19, 725–727 (1994). [CrossRef]
  26. P. A. Morton, V. Mizrahi, T. Tanbun-Ek, R. A. Logan, P. Lemaire, H. M. Presby, T. Erdogan, S. L. Woodward, J. E. Sipe, M. R. Phillips, A. M. Sergent, and K. W. Wecht, “Stable single mode hybrid laser with high power and narrow linewidth,” Appl. Phys. Lett. 64, 2634–2636 (1994). [CrossRef]
  27. M. Sayin, “Theoretical model of the mode-locked hybrid soliton pulse source,” Ph.D. thesis (University of Gaziantep, 1999).
  28. L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: A numerical investigation,” J. Lightwave Technol. 15, 1503–1512 (1997). [CrossRef]
  29. M. S. Ozyazici and M. Sayin, “Effect of loss and pulsewidth variation on soliton propagations,” J. Optoelectron. Adv. Mater. 43, 447–477 (2003).
  30. M. Sayin, M. S. Ozyazici, and N. Dogru, “Theoretical model of the mode-locked hybrid soliton pulse source,” Opt. Eng. 46, 064201–064209 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited