OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 35–39

Directive emission based on one-dimensional metal heterostructures

Jie Luo, Ping Xu, and Lei Gao  »View Author Affiliations


JOSA B, Vol. 29, Issue 1, pp. 35-39 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000035


View Full Text Article

Enhanced HTML    Acrobat PDF (482 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a method to realize directive emission using a layered metal heterostructure with around-zero average permittivity in the optical region. In the long-wavelength limit the heterostructure can be viewed as an epsilon-near-zero metamaterial. Our results show that when a transverse electric polarized source is placed in front of the heterostructure only the lights around the lines normal to the surfaces of the heterostructure can propagate through it. By exploiting constructive interference we can achieve good directivity and high transmission simultaneously. In addition, if the source is embedded in the heterostructure, the energy radiated by the source will be concentrated in a narrow cone.

© 2011 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: July 11, 2011
Revised Manuscript: August 21, 2011
Manuscript Accepted: October 14, 2011
Published: December 9, 2011

Citation
Jie Luo, Ping Xu, and Lei Gao, "Directive emission based on one-dimensional metal heterostructures," J. Opt. Soc. Am. B 29, 35-39 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-1-35


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Akalin, J. Danglot, O. Vanbésien, and D. Lippens, “A highly directive dipole antenna embedded in a Fabry–Pérot type cavity,” IEEE Microw. Wireless Compon. Lett. 12, 48–50(2002). [CrossRef]
  2. B. Temelkuran, M. Bayindir, E. Ozbay, R. Biswas, M. M. Sigalas, G. Tuttle, and K. M. Ho, “Photonic crystal-based resonant antenna with a very high directivity,” J. Appl. Phys. 87, 603–605(2000). [CrossRef]
  3. S. N. Burokur, J. P. Daniel, P. Ratajczak, and A. de Lustrac, “Tunable bilayered metasurface for frequency reconfigurable directive emissions,” Appl. Phys. Lett. 97, 064101 (2010). [CrossRef]
  4. N. V. Q. Tran, S. Combrié, and A. De Rossi, “Directive emission from high-Q photonic crystal cavities through band folding,” Phys. Rev. B 79, 041101 (2009). [CrossRef]
  5. N. V. Q. Tran, S. Combrié, P. Colman, A. De Rossi, and T. Mei, “Vertical high emission in photonic crystal nanocavities by band-folding design,” Phys. Rev. B 82, 075120 (2010). [CrossRef]
  6. L. Zhou, H. Q. Li, Y. Q. Qin, Z. Y. Wei, and C. T. Chan, “Directive emissions from subwavelength metamaterial-based cavities,” Appl. Phys. Lett. 86, 101101 (2005). [CrossRef]
  7. I. Bulu, H. Caglayan, and E. Ozbay, “Highly directive radiation from sources embedded inside photonic crystals,” Appl. Phys. Lett. 83, 3263–3265 (2003). [CrossRef]
  8. H. Caglayan, I. Bulu, and E. Ozbay, “Highly directional enhanced radiation from sources embedded inside three-dimensional photonic crystals,” Opt. Express 13, 7645–7652 (2005). [CrossRef] [PubMed]
  9. S. Enoch, B. Gralak, and G. R. Tayeb, “Enhanced emission with angular confinement from photonic crystals,” Appl. Phys. Lett. 81, 1588–1590 (2002). [CrossRef]
  10. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002). [CrossRef] [PubMed]
  11. I. Bulu, H. Caglayan, K. Aydin, and E. Ozbay, “Compact size highly directive antennas based on the SRR metamaterial medium,” New J. Phys. 7, 223 (2005). [CrossRef]
  12. Z. B. Weng, Y. C. Jiao, G. Zhao, and F. S. Zhang, “Design and experiment of one dimension and two dimension metamaterial structure for directive emission,” PIER 70, 199–209 (2007). [CrossRef]
  13. Y. Yuan, L. F. Shen, L. X. Ran, T. Jiang, J. T. Huangfu, and J. A. Kong, “Directive emission based on anisotropic metamaterials,” Phys. Rev. A 77, 053821 (2008). [CrossRef]
  14. F. M. Zhu, Z. Y. Wang, T. Jiang, L. F. Shen, and L. X. Ran, “Directive emission based on a new type of metamaterial,” Microwave Opt. Technol. Lett. 51, 2178–2180 (2009). [CrossRef]
  15. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using “ε-near-zero materials,” Phys. Rev. Lett. 97, 157403 (2006). [CrossRef] [PubMed]
  16. M. G. Silveirinha and N. Engheta, “Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends using ε near-zero metamaterials,” Phys. Rev. B 76, 245109 (2007). [CrossRef]
  17. M. Silveirinha and N. Engheta, “Design of matched zero-index metamaterials using nonmagnetic inclusions in epsilon-near-zero media,” Phys. Rev. B 75, 075119 (2007). [CrossRef]
  18. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75, 155410(2007). [CrossRef]
  19. A. Alù and N. Engheta, “Dielectric sensing in ε-near-zero narrow waveguide channels,” Phys. Rev. B 78, 045102 (2008). [CrossRef]
  20. A. Alù, M. G. Silveirinha, and N. Engheta, “Transmission-line analysis of ε-near-zero–filled narrow channels,” Phys. Rev. E 78, 016604 (2008). [CrossRef]
  21. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008). [CrossRef] [PubMed]
  22. R. Liu, Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, “Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies,” Phys. Rev. Lett. 100, 023903 (2008). [CrossRef] [PubMed]
  23. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Reflectionless sharp bends and corners in waveguides using epsilon-near-zero effects,” J. Appl. Phys. 105, 044905 (2009). [CrossRef]
  24. Y. Xu and H. Chen, “Total reflection and transmission by epsilon-near-zero metamaterials with defects,” Appl. Phys. Lett. 98, 113501 (2011). [CrossRef]
  25. L. V. Alekseyev, E. E. Narimanov, T. Tumkur, H. Li, Y. A. Barnakov, and M. A. Noginov, “Uniaxial epsilon-near-zero metamaterial for angular filtering and polarization control,” Appl. Phys. Lett. 97, 131107 (2010). [CrossRef]
  26. B. Wang and K. M. Huang, “Shaping the radiation pattern with mu and epsilon-near-zero metamaterials,” PIER 106, 107–119(2010). [CrossRef]
  27. X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97, 073901 (2006). [CrossRef] [PubMed]
  28. H. C. Shin and S. H. Fan, “All-angle negative refraction and evanescent wave amplification using one-dimensional metallodielectric photonic crystals,” Appl. Phys. Lett. 89, 151102(2006). [CrossRef]
  29. L. F. Shen, T. J. Yang, and Y. F. Chau, “50/50 beam splitter using a one-dimensional metal photonic crystal with parabolalike dispersion,” Appl. Phys. Lett. 90, 251909 (2007). [CrossRef]
  30. C. C. Yan, D. H. Zhang, Y. A. Zhang, D. D. Li, and M. A. Fiddy, “Metal-dielectric composites for beam splitting and far-field deep sub-wavelength resolution for visible wavelengths,” Opt. Express 18, 14794–14801 (2010). [CrossRef] [PubMed]
  31. J. Luo, P. Xu, T. Sun, and L. Gao, “Tunable beam splitting and optical negative refraction in heterostructure with metamaterial,” Appl. Phys. A 104, 1137–1142 (2011). [CrossRef]
  32. M. Scalora, G. D’Aguanno, N. Mattiucci, M. J. Bloemer, D. de Ceglia, M. Centini, Antonio Mandatori, C. Sibilia, N. Akozbek, M. G. Cappeddu, M. Fowler, and J. W. Haus, “Negative refraction and sub-wavelength focusing in the visible range using transparent metallodielectric stacks,” Opt. Express 15, 508–523 (2007). [CrossRef] [PubMed]
  33. D. W. Berreman, “Optics in stratified and anisotropic media: 4×4-matrix formulation,” J. Opt. Soc. Am. 62, 502–510 (1972). [CrossRef]
  34. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited