OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 53–67

Toy model to describe the effect of positional blocklike disorder in metamaterials composites

José María Rico-García, José Manuel López-Alonso, and Ashod Aradian  »View Author Affiliations


JOSA B, Vol. 29, Issue 1, pp. 53-67 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000053


View Full Text Article

Enhanced HTML    Acrobat PDF (2327 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study theoretically the effect of a new type of blocklike positional disorder on the effective electromagnetic properties of one-dimensional chains of resonant, high-permittivity dielectric particles, where particles are arranged into perfectly well-ordered blocks whose relative position is a random variable. This creates a finite order correlation length that mimics the situation encountered in metamaterials fabricated through self-assembled techniques, whose structures often display short-range order between near neighbors but long-range disorder, due to stacking defects. Using a spectral theory approach combined with a principal component statistical analysis, we study, in the long-wavelength regime, the evolution of the electromagnetic response when the composite filling fraction and the block size are changed. Modifications in key features of the resonant response (amplitude, width, etc.) are investigated, showing a regime transition for a filling fraction around 50%.

© 2011 Optical Society of America

OCIS Codes
(160.1245) Materials : Artificially engineered materials
(050.2065) Diffraction and gratings : Effective medium theory
(160.3918) Materials : Metamaterials

ToC Category:
Metamaterials

History
Original Manuscript: July 29, 2011
Revised Manuscript: October 9, 2011
Manuscript Accepted: October 14, 2011
Published: December 9, 2011

Citation
José María Rico-García, José Manuel López-Alonso, and Ashod Aradian, "Toy model to describe the effect of positional blocklike disorder in metamaterials composites," J. Opt. Soc. Am. B 29, 53-67 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-1-53


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  2. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  3. B. Edwards, A. Alu, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100, 033903 (2008). [CrossRef] [PubMed]
  4. C. M. Soukoulis, J. Zhou, T. Koschny, M. Kafesaki, and E. N. Economou, “The science of negative index materials,” J. Phys. Condens. Matter 20, 304217 (2008). [CrossRef]
  5. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photon. 1, 41–48 (2007). [CrossRef]
  6. E. Shamonina and L. Solymar, “Metamaterials: how the subject started,” Metamaterials 1, 12–18 (2007). [CrossRef]
  7. A. Boltasseva and V. M. Shalaev, “Fabrication of optical negative-index metamaterials: recent advances and outlook,” Metamaterials 2, 1–17 (2008). [CrossRef]
  8. K. Aydin, K. Guven, N. Katsarakis, C. M. Soukoulis, and E. Ozbay, “Effect of disorder on magnetic resonance band gap of split-ring resonator structures,” Opt. Express 12, 5896–5901(2004). [CrossRef] [PubMed]
  9. A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Suppression of left-handed properties in disordered metamaterials,” J. Appl. Phys. 97, 113906 (2005). [CrossRef]
  10. X. P. Zhao, Q. Zhao, L. Kang, J. Song, and Q. H. Fu, “Defect effect of split ring resonators in left-handed metamaterials,” Phys. Lett. A 346, 87–91 (2005). [CrossRef]
  11. M. V. Gorkunov, S. A. Gredeskul, I. V. Shadrivov, and Y. S. Kivshar, “Effect of microscopic disorder on magnetic properties of metamaterials,” Phys. Rev. E 73, 056605 (2006). [CrossRef]
  12. D. A. Powell, M. Lapine, M. V. Gorkunov, I. V. Shadrivov, and Y. S. Kivshar, “Metamaterial tuning by manipulation of near-field interaction,” Phys. Rev. B 82, 155128 (2010). [CrossRef]
  13. V. Ponsinet, A. Aradian, P. Barois, and S. Ravaine,“Self-assembly and nanochemistry techniques for the fabrication of metamaterials” in Metamaterials Handbook: Applications of Metamaterials, F.Capolino, ed. (CRC Press, 2009), Vol.  2.
  14. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today 12, 60–69 (2009). [CrossRef]
  15. Q. Zhao, L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, “Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite,” Phys. Rev. Lett. 101, 027402 (2008). [CrossRef] [PubMed]
  16. R. Yahiaoui, H. Němec, P. Kužel, F. Kadlec, C. Kadlec, and P. Mounaix, “Broadband dielectric terahertz metamaterials with negative permeability,” Opt. Lett. 34, 3541–3543 (2009). [CrossRef] [PubMed]
  17. C. Noguez and R. G. Barrera, “Disorder effects on the effective dielectric response of a linear chain of polarizable spheres,” Physica A 211, 399–410 (1994). [CrossRef]
  18. V. N. AstratovJ. P. Franchak, and S. P. Ashili, “Optical coupling and transport phenomena in chains of spherical dielectric microresonators with size disorder,” Appl. Phys. Lett. 85, 5508–5510 (2004). [CrossRef]
  19. V. N. Astratov and S. P. Ashili, “Percolation of light through whispering gallery modes in 3D lattices of coupled microspheres,” Opt. Express 15, 17351–17361 (2007). [CrossRef] [PubMed]
  20. G. S. Blaustein, M. I. Gozman, O. Samoylova, I. Ya. Polishchuk, and A. L. Burin, “Guiding optical modes in chains of dielectric particles” Opt. Express 15, 17380–17391 (2007). [CrossRef] [PubMed]
  21. C.-S. Deng, H. Xu, and L. Deych, “Effect of size disorder on the optical transport in chains of coupled microspherical resonators,” Opt. Express 19, 6923–6937 (2011). [CrossRef] [PubMed]
  22. Y. Park and D. Stroud, “Surface-plasmon dispersion relation in chains of metallic nanoparticles: an exact quasistatic calculation,” Phys. Rev. B 69, 125418 (2004). [CrossRef]
  23. L. Lewin, “The electrical constants of a material loaded with spherical particles,” J. Inst. Electr. Eng. Part 3 94, 65–68(1947).
  24. C. L. Holloway, E. F. Kuester, J. Baker-Jarvis, and P. Kabos, “A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix,” IEEE Trans. Antennas Propag. 51, 2596–2603 (2003). [CrossRef]
  25. L. Jylhä, I. Kolmakov, S. Maslovski, and S. Tretyakov, “Modeling of isotropic backward-wave materials composed of resonant spheres,” J. Appl. Phys. 99, 043102 (2006). [CrossRef]
  26. G. P. Ortiz, C. López-Bastidasa, J. A. Maytorena, and W. L. Mochán, “Bulk response of composites from finite samples,” Physica B 338, 54–57 (2003). [CrossRef]
  27. G. P. Ortiz and W. L. Mochán, “Scaling of light scattered from fractal aggregates at resonance,” Phys. Rev. B 67, 184204(2003). [CrossRef]
  28. V. A. Markel, V. N. Pustovit, S. V. Karpov, A. V. Obuschenko, V. S. Gerasimov, and I. L. Isaev, “Electromagnetic density of states and absorption of radiation by aggregates of nanospheres with multipole interactions,” Phys. Rev. B 70, 054202 (2004). [CrossRef]
  29. M. I. Stockman, K. B. Kurlayev, and T. F. George, “Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: dipolar spectral theory,” Phys. Rev. B 60, 17071–17083 (1999). [CrossRef]
  30. C. Noguez and R. Barrera, “Multipolar and disorder effects in the optical properties of granular composites,” Phys. Rev. B 57, 302–313 (1998). [CrossRef]
  31. D. J. Bergman and D. Stroud, “Theory of resonances in the electromagnetic scattering by macroscopic bodies,” Phys. Rev. Lett. 22, 3527–3539 (1980).
  32. J. Sancho-Parramón, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal–dielectric nanocomposites for metamaterial applications,” Opt. Express 18, 26915–26928(2010). [CrossRef]
  33. M. Gorkunov, M. Lapine, E. Shamonina, and K. H. Ringhofer, “Effective magnetic properties of a composite material with circular conductive elements,” Eur. Phys. J. B 28, 263–269(2002). [CrossRef]
  34. J. M. Rico-García, J. M. López-Alonso, and J. Alda, “Characterization of photonic crystal microcavities with manufacture imperfections,” Opt. Express 13, 3802–3815 (2005). [CrossRef] [PubMed]
  35. J. M. López-Alonso, J. Alda, and E. Bernabéu, “Principal component characterization of noise for infrared images,” Appl. Opt. 41, 320–331 (2002). [CrossRef] [PubMed]
  36. C. J. Behrend, J. N. Anker, and R. Kopelman, “Brownian modulated optical nanoprobes,” Appl. Phys. Lett. 84, 154–156(2004). [CrossRef]
  37. C. Macías-Romero, R. Lim, M. R. Foreman, and P. Török, “Synthesis of structured partially spatially coherent beams,” Opt. Lett. 36, 1638–1640 (2011). [CrossRef] [PubMed]
  38. D. F. Morrison, Multivariate Statistical Methods, 3rd ed. (McGraw-Hill, 1990), Chap. 8.
  39. T. W. Du Bosq, J. M. Lopez-Alonso, and G. D. Boreman, “Millimeter wave imaging system for land mine detection,” Appl. Opt. 45, 5686–5692 (2006). [CrossRef] [PubMed]
  40. A. García-Etxarri, R. Gómez-Medina, L. S. Froufe-Pérez, C. López, L. Chantada, F. Scheffold, J. Aizpurua, M. Nieto-Vesperinas, and J. J. Sáenz, “Strong magnetic response of submicron silicon particles in the infrared,” Opt. Express 19, 4815–4826 (2011). [CrossRef] [PubMed]
  41. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Coated nonmagnetic spheres with a negative index of refraction at infrared frequencies” Phys. Rev. B 73, 045105 (2006). [CrossRef]
  42. M. S. Wheeler, J. S. Aitchison, and M. Mojahedi, “Three-dimensional array of dielectric spheres with an isotropic negative permeability at infrared frequencies,” Phys. Rev. B 72, 193103 (2005). [CrossRef]
  43. V. Yannopapas and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges,” J. Phys. Condens. Matter 17, 3717–3734 (2005). [CrossRef] [PubMed]
  44. B. Ersfeld and B. U. Felderhof, “Retardation correction to the Lorentz–Lorentz formula for the refractive index of a disordered system of polarizable point dipoles,” Phys. Rev. E 57, 1118–1126(1998). [CrossRef]
  45. J. Li and J. B. Pendry, “Non-local effective medium of metamaterial,” (2007) arXiv:cond-mat/0701332v1 [cond-mat.mtrl-sci].
  46. R. G. Barrera and R. Fuchs, “Theory of electron energy loss in a random systems of spheres,” Phys. Rev. B 52, 3256–3273 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited