OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 75–78

Modeling decoherence in a driven two-level system using random matrix theory

Jin Wang  »View Author Affiliations


JOSA B, Vol. 29, Issue 1, pp. 75-78 (2012)
http://dx.doi.org/10.1364/JOSAB.29.000075


View Full Text Article

Enhanced HTML    Acrobat PDF (364 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Random matrix theory is used to model a two-level quantum system driven by a laser and coupled to a reservoir with N degrees of freedom in both Markovian and non-Markovian regimes. Decoherence is naturally included in this model. The effect of reservoir dimension and coupling strength between the system and reservoir is explored.

© 2011 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: August 9, 2011
Revised Manuscript: September 16, 2011
Manuscript Accepted: October 19, 2011
Published: December 9, 2011

Citation
Jin Wang, "Modeling decoherence in a driven two-level system using random matrix theory," J. Opt. Soc. Am. B 29, 75-78 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-1-75


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44 (1991). [CrossRef]
  2. C. Kiefer, D. J. W. Giulini, J. Kupsch, I.-O. Stamatescu, E. Joos, and H. D. Zeh, Decoherence and the Appearance of a Classical World in Quantum Theory (Springer, 2010).
  3. G. Lindblad, “On the generators of quantum dynamical semigroups,” Commun. Math. Phys. 48, 119–130 (1976). [CrossRef]
  4. A. A. Budini, “Random Lindblad equations from complex environments,” Phys. Rev. E 72, 056106 (2005). [CrossRef]
  5. X. L. Huang, H. Y. Sun, and X. X. Yi, “Non-markovian quantum jump with generalized Lindblad master equation,” Phys. Rev. E 78, 041107 (2008). [CrossRef]
  6. M. Genkin, E. Waltersson, and E. Lindroth, “Estimation of the spatial decoherence time in circular quantum dots,” Phys. Rev. B 79, 245310 (2009). [CrossRef]
  7. T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M. Wong, “Random-matrix physics: spectrum and strength fluctuations,” Rev. Mod. Phys. 53, 385–479 (1981). [CrossRef]
  8. J. Gong and P. Brumer, “Coherent control of quantum chaotic diffusion,” Phys. Rev. Lett. 86, 1741–1744 (2001). [CrossRef] [PubMed]
  9. F. Franchini and V. E. Kravtsov, “Horizon in random matrix theory, the hawking radiation, and flow of cold atoms,” Phys. Rev. Lett. 103, 166401 (2009). [CrossRef] [PubMed]
  10. C. Pineda, T. Gorin, and T. H. Seligman, “Decoherence of two-qubit systems: a random matrix description,” New J. Phys. 9, 1–35 (2007). [CrossRef]
  11. M. Sadgrove, S. Wimberger, S. Parkins, and R. Leonhardt, “Scaling law and stability for a noisy quantum system,” Phys. Rev. E 78, 025206 (2008). [CrossRef]
  12. H. J. Carmichael, Statistical Methods in Quantum Optics (Springer, 1996).
  13. G. J. Milburn and D. F. Walls, Quantum Optics (Springer, 1994).
  14. W. T. Strunz, L. Diósi, and N. Gisin, “Open system dynamics with non-Markovian quantum trajectories,” Phys. Rev. Lett. 82, 1801–1805 (1999). [CrossRef]
  15. J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008). [CrossRef] [PubMed]
  16. R. Vasile, S. Olivares, M. A. Paris, and S. Maniscalco, “Continuous-variable quantum key distribution in non-Markovian channels,” Phys. Rev. A 83, 042321 (2011). [CrossRef]
  17. K.-L. Liu and H.-S. Goan, “Non-Markovian entanglement dynamics of quantum continuous variable systems in thermal environments,” Phys. Rev. A 76, 022312 (2007). [CrossRef]
  18. B. Misra and E. C. G. Sudarshan, “The zeno’s paradox in quantum theory,” J. Math. Phys. 18, 756–763 (1977). [CrossRef]
  19. F. M. Spedalieri, H. Lee, M. Florescu, K. T. Kapale, U. Yurtsever, and J. P. Dowling, “Exploiting the quantum zeno effect to beat photon loss in linear optical quantum information processors,” Opt. Commun. 254, 374–379 (2005). [CrossRef]
  20. S. Mancini and R. Bonifacio, “Quantum zeno-like effect due to competing decoherence mechanisms,” Phys. Rev. A 64, 042111(2001). [CrossRef]
  21. H.-P. Breuer, B. Kappler, and F. Petruccione, “Stochastic wave-function method for non-Markovian quantum master equations,” Phys. Rev. A 59, 1633–1643 (1999). [CrossRef]
  22. H.-P. Breuer, “Genuine quantum trajectories for non-Markovian processes,” Phys. Rev. A 70, 012106 (2004). [CrossRef]
  23. J. T. Stockburger and H. Grabert, “Exact c-number representation of non-Markovian quantum dissipation,” Phys. Rev. Lett. 88, 170407 (2002). [CrossRef] [PubMed]
  24. J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen, “Non-Markovian quantum jumps,” Phys. Rev. Lett. 100, 180402 (2008). [CrossRef] [PubMed]
  25. J. Piilo, K. Härkönen, S. Maniscalco, and K.-A. Suominen, “Open system dynamics with non-Markovian quantum jumps,” Phys. Rev. A 79, 062112 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited