OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 1 — Jan. 1, 2012
  • pp: 88–100

Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays

Drew DeJarnette, D. Keith Roper, and Braden Harbin  »View Author Affiliations

JOSA B, Vol. 29, Issue 1, pp. 88-100 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (935 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Metallic nanoparticles organized in regular arrays exhibit an extraordinary spectral feature that arises from electromagnetic coupling between localized surface plasmons and constructive interference from diffracted far-field radiation. A rapid semianalytical description of coupling between dipoles and scattering modes is applied to examine the influence of nanoparticle size, dielectric, and interparticle separation on the occurrence, resonant wavelength, and intensity of the extraordinary spectral feature. Introducing a dynamic polarizability that includes higher-order electric poles into the description accurately characterizes plasmon resonances of larger particles. Previously unrecognized patterns and periodic variations in the extraordinary feature were observed to result from modulations in polarizability, as well as from interference of scattered modes that were distinguishable for the first time using the rapid semianalytic solution. Streamlined rational design of metamaterials with optimum optical properties using the rapid semianalytic coupled dipole approximation is considered.

© 2011 Optical Society of America

OCIS Codes
(260.5430) Physical optics : Polarization
(290.4020) Scattering : Mie theory
(250.5403) Optoelectronics : Plasmonics
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Physical Optics

Original Manuscript: August 16, 2011
Manuscript Accepted: September 22, 2011
Published: December 9, 2011

Drew DeJarnette, D. Keith Roper, and Braden Harbin, "Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays," J. Opt. Soc. Am. B 29, 88-100 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. J. Beck, S. Mokkapati, A. Polman, and K. R. Catchpole, “Asymmetry in photocurrent enhancement by plasmonic nanoparticle arrays located on the front or on the rear of solar cells,” Appl. Phys. Lett. 96, 033113 (2010). [CrossRef]
  2. S. Mokkapati, F. J. Beck, A. Polman, and K. R. Catchpole, “Designing periodic arrays of metal nanoparticles for light-trapping applications in solar cells,” Appl. Phys. Lett. 95, 053115 (2009). [CrossRef]
  3. A. Csaki, R. Möller, and W. Fritzsche, “Gold nanoparticles as novel label for DNA diagnostics,” Expert Rev. Mol. Diagn. 2, 187–193 (2002). [CrossRef] [PubMed]
  4. C. Gulmann, K. M. Sheehan, E. W. Kay, L. A. Liotta, and E. F. Petricoin III, “Array-based proteomics: mapping of protein circuitries for diagnostics, prognostics, and therapy guidance in cancer,” J. Pathol. Bacteriol. 208, 595–606 (2006). [CrossRef]
  5. K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch, and J. Popp, “SERS: a versatile tool in chemical and biochemical diagnostics,” Anal. Bioanal. Chem. 390, 113–124 (2008). [CrossRef]
  6. I. Willner and B. Willner, “Functional nanoparticle architectures for sensoric, optoelectronic, and bioelectronic applications,” Pure Appl. Chem. 74, 1773–1783 (2002). [CrossRef]
  7. X. Liu, L. Zhao, H. Shen, H. Xu, and L. Lu, “Ordered gold nanoparticle arrays as surface-enhanced Raman spectroscopy substrates for label-free detection of nitroexplosives,” Talanta 83, 1023–1029 (2011). [CrossRef]
  8. J. Li, X. Hu, Y. Gu, and Q. Gong, “Tunable wavelength-division multiplexing based on metallic nanoparticle arrays,” Opt. Lett. 35, 4051–4053 (2010). [CrossRef] [PubMed]
  9. S. Jeong, L. Hu, H. R. Lee, E. Garnett, J. W. Choi, and Y. Cui, “Fast and scalable printing of large area monolayer nanoparticles for nanotexturing applications,” Nano Lett. 10, 2989–2994(2010). [CrossRef] [PubMed]
  10. S. Bhaviripudi, E. Mile, S. A. Steiner III, A. T. Zare, M. S. Dresselhaus, A. M. Belcher, and J. Kong, “CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts,” J. Am. Chem. Soc. 129, 1516–1517 (2007). [CrossRef] [PubMed]
  11. T. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, and J. Feldmann, “Surface-plasmon resonances in single metallic nanoparticles,” Phys. Rev. Lett. 80, 4249–4252 (1998). [CrossRef]
  12. L. Zhao, K. L. Kelly, and G. C. Schatz, “The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width,” J. Phys. Chem. 107, 7343–7350 (2003). [CrossRef]
  13. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110, 7238–7248 (2006). [CrossRef] [PubMed]
  14. M. K. Kinnan and G. Chumanov, “Plasmon coupling in two-dimensional arrays of silver nanoparticles: II. Effect of the particle size and interparticle distance,” J. Phys. Chem. C 114, 7496–7501 (2010). [CrossRef]
  15. S. Link and M. A. El-Sayed, “Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles,” J. Phys. Chem. B 103, 4212–4217 (1999). [CrossRef]
  16. C. L. Haynes, A. D. McFarland, L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, “Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays,” J. Phys. Chem. B 107, 7337–7342 (2003). [CrossRef]
  17. Y. Chu, E. Schonbrun, T. Ang, and K. B. Crozier, “Experimental observation of narrow surface resonances in gold nanoparticle array,” Appl. Phys. Lett. 93, 181108 (2008). [CrossRef]
  18. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized surface plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett. 101, 087403 (2008). [CrossRef] [PubMed]
  19. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle array,” J. Chem. Phys. 121, 12606–12612 (2004). [CrossRef] [PubMed]
  20. B. Auguie and W. L. Barnes, “Diffractive coupling in gold nanoparticle arrays and the effect of disorder,” Opt. Lett. 34, 401–403 (2009). [CrossRef] [PubMed]
  21. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical Response features of Si-nanoparticle arrays,” Phys. Rev. B 82, 045404 (2010). [CrossRef]
  22. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  23. F. Zhou, Z. Y. Li, Y. Liu, and Y. Xia, “Quantitative analysis of dipole and quadrupole excitation in the surface plasmon resonance of metal nanoparticles,” J. Phys. Chem. C 112, 20233–20240 (2008). [CrossRef]
  24. D. K. Roper, B. Taylor, W. Ahn, and Y. Dall’Asen, “Optoplasmonic gold nanoparticle assembly for sensing, spectroscopy and heat transfer,” presented at International Symposium on Spectral Sensing Research 2008, Hoboken, N.J., 23–27 June 2008.
  25. D. K. Roper, W. Ahn, B. Taylor, and A. G. Dall’Asen, “Enhanced spectral sensing by electromagnetic coupling with localized surface plasmons on subwavelength structures,” IEEE Sens. J. 10, 531–540 (2010). [CrossRef]
  26. G. Mie, “Contributions on the optics of turbid media, particularly colloidal metal solutions,” Ann. Phys. 25, 377–445 (1908). [CrossRef]
  27. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  28. J. A. Roden and S. D. Gedney, “Convolution PML (CPML): an efficient FDTD implementation of the CFS–PML for arbitrary media,” Microw. Opt. Technol. Lett. 27, 334–339 (2000). [CrossRef]
  29. D. K. Roper, W. Ahn, P. Blake, and B. Taylor, “Extraordinary plasmon coupling in Au NP arrays for enhanced second harmonic generation,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.
  30. W. T. Doyle, “Optical properties of a suspension of metal spheres,” Phys. Rev. B 39, 9852–9858 (1989). [CrossRef]
  31. D. K. Roper, P. Blake, W. Ahn, B. Harbin, G. Jang, and B. Taylor, “Subwavelength nanoparticle ordered structures for bio, micro, & spectral analysis,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.
  32. D. K. Roper, W. Ahn, P. Blake, B. Taylor, and A. Dall’Asen, “Subwavelength NP ordered structures for enhanced sensing,” presented at the 237th ACS National Meeting, Salt Lake City, Utah, 22–26 March 2009.
  33. P. Blake, J. Obermann, B. Harbin, and D. K. Roper, “Enhanced nanoparticle response from coupled dipole excitation for plasmon sensors,” IEEE Sens. J. 11, 3332–3340 (2011). [CrossRef]
  34. D. K. Roper, P. Blake, W. Ahn, B. Taylor, A. G. Russell, and G. Jang, “Radiative photon-plasmon coupling for enhanced energy conversion,” presented at the 238th ACS National Meeting, Washington, D.C., 16–20 August 2009.
  35. C. P. Burrows and W. L. Barnes, “Large spectral extinction due to overlap of dipolar and quadrupolar plasmonic modes of metallic nanoparticles in arrays,” Opt. Express 18, 3187–3198 (2010). [CrossRef] [PubMed]
  36. P. G. Etchegoin, E. C. Le Ru, and M. Meyer, “An analytic model for the optical properties of gold,” J. Chem. Phys. 125, 164705 (2006). [CrossRef] [PubMed]
  37. D. K. Roper, “Tuning plasmon-coupled radiation in nanolattices to bandgaps in the near-IR,” presented at the ACS Symposium, Optical Science and Emerging Energy Technologies, ACS Spring Meeting, San Francisco, California, 22 March 2010.
  38. D. K. Roper, W. Ahn, P. Blake, B. Harbin, and G. Jang, “Tuning plasmon-coupled radiation in nanolattices to semiconductor bandgaps,” presented at the 239th ACS National Meeting, San Francisco, California, 21–25 March 2010.
  39. N. Liu, M. Hentschel, T. Weiss, A. P. Alivisatos, and H. Giessen, “Three-dimensional plasmon rulers,” Science 332, 1407–1410(2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited