OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2646–2658

Phase modulator birefringence effect on multibound soliton formation in an active mode-locked fiber laser

Le Nguyen Binh and Nguyen Duc Nhan  »View Author Affiliations

JOSA B, Vol. 29, Issue 10, pp. 2646-2658 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1742 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multibound solitons generated in an active mode-locked fiber ring resonator can be considered to offer some significant applications in the coding for optical packet transmission. Optical phase modulators (PMs) incorporated in such fiber ring resonators are fabricated in uniaxial birefringent crystal substrate and thus influence both polarized modes of a coupled linearly polarized mode from a weakly guiding fiber forming the ring. Thus there are two polarized rings in such a structure of the active mode-locked fiber ring resonators. They are coupled and interact with each other in the generation of multibound solitons. This paper thus studies the influence of two types of electrodes for phase modulation, lumped and traveling wave, in such birefringent fiber active ring resonators, and hence the transitional formation of multibound solitons. It is shown that there exist comblike spectral components in the ring cavity due to the birefringence property of the PM. Furthermore, the narrow free spectral range of the ring resonator limits the pulse shortening and hence the formation of the multibinding of solitons.

© 2012 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 25, 2012
Manuscript Accepted: January 30, 2012
Published: September 5, 2012

Le Nguyen Binh and Nguyen Duc Nhan, "Phase modulator birefringence effect on multibound soliton formation in an active mode-locked fiber laser," J. Opt. Soc. Am. B 29, 2646-2658 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. N. Binh and N. Q. Ngo, Ultra-Fast Fiber Ring Lasers (CRC Press, 2010).
  2. W. Sohler, “Integrated optics in LiNbO3,” Thin Solid Films 175, 191–200 (1989). [CrossRef]
  3. L. N. Binh, Photonic Signal Processing: Techniques and Applications (CRC Press, 2008).
  4. G. S. Lifante, Integrated Photonics Fundamentals (Wiley, 2003).
  5. W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982). [CrossRef]
  6. K. Kawano, T. Kitoh, O. Mitomi, T. Nozawa, and H. Jumonji, “A wide-band and low-driving-power phase modulator employing a Ti:LiNbO3 optical waveguide at 1.5 μm,” IEEE Photon. Technol. Lett. 1, 33–34 (1989). [CrossRef]
  7. K. Kawano, T. Kitoh, H. Jumonji, T. Nozawa, and M. Yanagibashi, “New travelling-wave electrode Mach–Zehnder optical modulator with 20 GHz bandwidth and 4.7 V driving voltage at 1.52 μm wavelength,” Electron. Lett. 25, 1382–1383 (1989). [CrossRef]
  8. K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995). [CrossRef]
  9. L. N. Binh, Guided Wave Photonics (CRC Press, 2011).
  10. R. Tench, J.-M. Delavaux, L. Tzeng, R. Smith, L. Buhl, and R. Alferness, “Performance evaluation of waveguide phase modulators for coherent systems at 1.3 and 1.5 μm,” J. Lightwave Technol. 5, 492–501 (1987). [CrossRef]
  11. Y. Shi, L. Yan, and A. E. Willner, “High-speed electrooptic modulator characterization using optical spectrum analysis,” J. Lightwave Technol. 21, 2358 (2003). [CrossRef]
  12. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36, 143–147 (1985). [CrossRef]
  13. E. Chan and R. A. Minasian, “A new optical phase modulator dynamic response measurement technique,” J. Lightwave Technol. 26, 2882–2888 (2008). [CrossRef]
  14. W. R. Leeb, A. L. Scholtz, and E. Bonek, “Measurement of velocity mismatch in traveling-wave electrooptic modulators,” IEEE J. Quantum Electron. 18, 14–16 (1982). [CrossRef]
  15. E. H. W. Chan and R. A. Minasian, “Sagnac-loop-based equivalent negative tap photonic notch filter,” IEEE Photon. Technol. Lett. 17, 1740–1742 (2005). [CrossRef]
  16. G. Shabtay, E. Eidinger, Z. Zalevsky, D. Mendlovic, and E. Marom, “Tunable birefringent filters—optimal iterative design,” Opt. Express 10, 1534–1541 (2002).
  17. G. J. Sellers and S. Sriram, “Manufacturing of lithium niobate integrated optic devices,” Opt. News 14, 29–31 (1988). [CrossRef]
  18. S. P. Li and K. T. Chan, “Electrical wavelength tunable and multiwavelength actively mode-locked fiber ring laser,” Appl. Phys. Lett. 72, 1954–1956, (1998). [CrossRef]
  19. Y. Zhao, C. Shu, J. H. Chen, and F. S. Choa, “Wavelength tuning of 1/2-rational harmonically mode-locked pulses in a cavity-dispersive fiber laser,” Appl. Phys. Lett. 73, 3483–3485 (1998). [CrossRef]
  20. D. Lingze, M. Dagenais, and J. Goldhar, “Smoothly wavelength-tunable picosecond pulse generation using a harmonically mode-locked fiber ring laser,” J. Lightwave Technol. 21, 930–937 (2003). [CrossRef]
  21. T. Aizawa, T. Sakai, A. Wada, and R. Yamauchi, “Effect of spectral-hole burning on multi-channel EDFA gain profile” in Optical Fiber Communication Conference, 1999, and the International Conference on Integrated Optics and Optical Fiber Communication, OFC/IOOC ’99, Technical Digest (1999), Vol. 2, pp. 102–104.
  22. M. Bolshtyansky, “Spectral hole burning in erbium-doped fiber amplifiers,” J. Lightwave Technol. 21, 1032 (2003). [CrossRef]
  23. D. Kovsh, S. Abbott, E. Golovchenko, and A. Pilipetskii, “Gain reshaping caused by spectral hole burning in long EDFA-based transmission links” in Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference, OFC 2006 (2006), pp. 1–3.
  24. N. D. Nguyen and L. N. Binh, “Generation of high-order multi-bound solitons and propagation in optical fibers,” Opt. Commun. 282, 2394–2406 (2009). [CrossRef]
  25. M. Desaix, L. Helczynski, D. Anderson, and M. Lisak, “Propagation properties of chirped soliton pulses in optical nonlinear Kerr media,” Phys. Rev. E 65, 056602 (2002). [CrossRef]
  26. J. E. Prilepsky, S. A. Derevyanko, and S. K. Turitsyn, “Conversion of a chirped Gaussian pulse to a soliton or a bound multisoliton state in quasi-lossless and lossy optical fiber spans,” J. Opt. Soc. Am. B 24, 1254–1261 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited