Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Tunable circuit elements at optical frequencies using gyroelectric nanoparticles

Not Accessible

Your library or personal account may give you access

Abstract

This paper addresses the possibility of realizing fixed as well as variable electric circuit elements at infrared and visible frequencies using a gyroelectric nanosphere biased with a static magnetic field. With a proper choice of port designation, one might exercise field control over the impedance offered by the nanoparticle. It is shown that although the driving-point impedance looking into a pair of terminals chosen in some directions remains fixed, it can vary significantly in other directions with respect to the magnetic field biasing the particle. When combined with other isotropic nanocircuit elements, more complex tunable nanocircuits can be designed. This paves the way for adaptive nanosystems for smarter applications.

© 2012 Optical Society of America

Full Article  |  PDF Article

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved