OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2691–2697

Surface polaritons with arbitrary magnetic and dielectric materials: new regimes, effects of negative index, and superconductors

C. H. Raymond Ooi, K. C. Low, Ryota Higa, and Tetsuo Ogawa  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2691-2697 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002691


View Full Text Article

Enhanced HTML    Acrobat PDF (811 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A surface magnon-polariton can be excited by both p- and s-polarized light if at least one of the layers is a magnetic material. We present general expressions of the tangential wave vectors of s- and p-polarized light at an interface of two media. Analysis reveals additional new regimes of surface polariton resonances with magnetic materials for s- and p-polarized light. The tangential wave vectors are found to be equal in magnitude to the normal wave vectors at surface polariton resonances. The spatial distributions of the fields at resonant enhancement and the spectra of the tangential wave vectors are studied for different dielectric permittivities and magnetic permeabilities of the two media. If one of the media has dispersive dielectric function and permeability function, additional surface polariton resonance peaks appear for both s- and p polarizations. For a medium with a superconductor, the tangential component increases asymptotically at lower frequencies, providing subwavelength capability at the terahertz regime.

© 2012 Optical Society of America

OCIS Codes
(240.5420) Optics at surfaces : Polaritons
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(350.3618) Other areas of optics : Left-handed materials
(160.3918) Materials : Metamaterials

ToC Category:
Optics at Surfaces

History
Original Manuscript: June 11, 2012
Revised Manuscript: July 30, 2012
Manuscript Accepted: August 2, 2012
Published: September 7, 2012

Citation
C. H. Raymond Ooi, K. C. Low, Ryota Higa, and Tetsuo Ogawa, "Surface polaritons with arbitrary magnetic and dielectric materials: new regimes, effects of negative index, and superconductors," J. Opt. Soc. Am. B 29, 2691-2697 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2691


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef]
  2. N. Yu, Q. J. Wang, C. Pflügl, L. Diehl, F. Capasso, T. Edamura, S. Furuta, M. Yamanishi, and H. Kan, “Semiconductor lasers with integrated plasmonic polarizers,” Appl. Phys. Lett. 94, 151101 (2009). [CrossRef]
  3. N. Yu, J. Fan, Q. J. Wang, C. Pflügl, L Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small divergence semiconductor lasers by plasmonic collimation,” Nat. Photon. 2, 564–570 (2008). [CrossRef]
  4. J. A. Shackleford, R. Grote, M. Currie, J. E. Spanier, and B. Nabet, “Integrated plasmonic lens photodetector,” Appl. Phys. Lett. 94, 083501 (2009). [CrossRef]
  5. J. A. Polo and A. Lakhtakia, “On the surface plasmon polariton wave at the planar interface of a metal and a chiral sculptured thin film,” Proc. R. Soc. A 465, 87–107 (2009). [CrossRef]
  6. L. Martin-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003). [CrossRef]
  7. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  9. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Superresolution optics using short-wavelength surface plasmon polaritons,” J. Mod. Opt. 53, 2337–2347 (2006). [CrossRef]
  10. E. Moreno, S. G. Rodrigo, S. I. Bozhenyi, L. Martin-Moreno, and F. J. Garcia-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008). [CrossRef]
  11. I. P. Radko, S. I. Bozhenyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007). [CrossRef]
  12. G. Farkas and C. Toth, “Energy spectrum of phoelectrons produced by picosecond laser-induced surface multiphoton photoeffect,” Phys. Rev. A 41, 4123–4126 (1990). [CrossRef]
  13. M. Raynaud and J. Kupersztych, “Ponderomotive effects in the femtosecond plasmon-assisted photoelectric effect in bulk metals: evidence for coupling between surface and interface plasmons,” Phys. Rev. B 76, 241402 (2007). [CrossRef]
  14. S. Varro and F. Ehlotzky, “High-order multiphoton ionization at metal surfaces by laser fields of moderate power,” Phys. Rev. A 57, 663–666 (1998). [CrossRef]
  15. J. Zawadzka, D. A. Jaroszynski, J. J. Carey, and K. Wynne, “Evanescent-wave acceleration of ultrashort electron pulses,” Appl. Phys. Lett. 79, 2130–2132 (2001). [CrossRef]
  16. D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M. D. Lukin, “Strong coupling of single emitters to surface plasmons,” Phys. Rev. B 76, 035420 (2007). [CrossRef]
  17. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3, 601–605 (2004). [CrossRef]
  18. J. E. Sipe, V. C. Y. So, M. Fukui, and G. I. Stegeman, “Analysis of second-harmonic generation at metal surface,” Phys. Rev. B 21, 4389–4402 (1980). [CrossRef]
  19. R. Rokitski, K. A. Tetz, and Y. Fainman, “Propagation of femtosecond surface plasmon polariton pulses on the surface of a nanostructured metallic film: space-time complex amplitude characterization,” Phys. Rev. Lett. 95, 177401 (2005). [CrossRef]
  20. J. Lehmann, M. Merschdorf, W. Pfeiffer, A. Thon, S. Voll, and G. Gerber, “Surface plasmon dynamics in silver nanoparticles studied by femtosecond time-resolved photoemission,” Phys. Rev. Lett. 85, 2921–2924 (2000). [CrossRef]
  21. F. Intravaia and A. Lambrecht, “Surface plasmon modes and the casimir energy,” Phys. Rev. Lett. 94110404 (2005). [CrossRef]
  22. G. R. Quidant, G. Badenes, and D. Petrov, “Surface plasmon radiation forces,” Phys. Rev. Lett. 96, 238101 (2006). [CrossRef]
  23. D. Heitmann, N. Kroo, C. Schulz, and Z. Szentirmay, “Dispersion anomalies of surface plasmons on corrugated metal-insulator interface,” Phys. Rev. B 35, 2660–2666 (1987). [CrossRef]
  24. R. Jin, Y. W. Cao, C. A. Mirkin, K. L. Kelly, G. C. Schatz, and J. G. Zheng, “Photoinduced conversion of silver nanospheres to nanoprisms,” Science 294, 1901–1903 (2001). [CrossRef]
  25. J. Lee, P. Hernandez, J. Lee, A. O. Govorov, and N. A. Kotovi, “Exciton-plasmon interactions in molecular spring assemblies of nanowires and wavelength-based protein detection,” Nat. Mater. 6, 291–295 (2007). [CrossRef]
  26. J. B-Abad, A. Degiron, F. Przybilla, C. Genet, F. J. Garcia-Vidal, L. Martin-Moreno, and T. W. Ebbesen, “How light emerges from an illuminated array of subwavelength holes,” Nature Phys. 2, 120–123 (2006). [CrossRef]
  27. E. Moreno, F. J. Garcia-Vidal, Daniel Erni, J. I. Cirac, and L. Martin-Moreno, “Theory of plasmon-assisted transmission of entangled photons,” Phys. Rev. Lett. 92, 236801 (2004). [CrossRef]
  28. A. Drezet, J. C. Woehl, and S. Huant, “Difraction by a small aperture in conical geometry: application to metal-coated tips used in near-field scanning optical microscopy,” Phys. Rev. E 65, 046611 (2002). [CrossRef]
  29. L. Novotny, R. X. Bian, and X. S. Xie, “Theory of nanometric optical tweezers,” Phys. Rev. Lett. 79, 645–648 (1997). [CrossRef]
  30. M. Rosenblit, Y. Japha, P. Horak, and R. Folman, “Simultaneous optical trapping and detection of atoms by microdisk resonators,” Phys. Rev. A 73, 063805 (2006). [CrossRef]
  31. J. B. Khurgin, “Surface plasmon-assisted laser cooling of solids,” Phys. Rev. Lett. 98, 177401 (2007). [CrossRef]
  32. R. E. Camley and D. L. Mills, “Collective excitatation of semi-infinite superlattice structure: surface plasmons, bulk plasmon and the electron-energy-loss spectrum,” Phys. Rev. B 29, 1695 (1984). [CrossRef]
  33. J. Seidel, S. Grafström, and L. Eng, “Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution,” Phys. Rev. Lett. 94, 177401 (2005). [CrossRef]
  34. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89, 093120 (2006). [CrossRef]
  35. See V. M. Agranovich and D. L. Mills, ed., Surface Polaritons : Electromagnetic Waves at Surfaces and Interfaces (North-Holland1982).
  36. M. G. Cottam and D. R. Tilley, Introduction to Surface and Superlattice Excitations (Cambridge University, 1989).
  37. R. Ruppin, “Surface polaritons of a left-handed medium,” Phys. Lett. A 277, 61–64 (2000). [CrossRef]
  38. A. Hartstein, E. Burstein, A. A. Maradudin, R. Brewer, and R. F. Wallis, “Surface polaritons on semi-infinite gyromagnetic media,” J. Phys. C Solid State Phys. 6, 1266–1276 (1973). [CrossRef]
  39. V. H. Arakelian, L. A. Bagdassarian, and S. G. Simonian, “Electrodynamics of bulk and surface normal magnonpolaritons in antiferromagnetic crystals,” J. Magn. Magn. Mater. 167, 149–160 (1997). [CrossRef]
  40. J. Matsuura, M. Fukui, and O. Tada, “ATR mode of surface magnon polaritons on YIG,” Solid State Commun. 45, 157–160 (1983). [CrossRef]
  41. M. Marchand and A. Caill, “Asymmetrical guided magnetic polaritons in a ferromagnetic slab,” Solid State Commun. 34, 827–831 (1980). [CrossRef]
  42. C. Shu and A. Caillé, “Surface magnetic polaritons on uniaxial antiferromagnets,” Solid State Commun. 42, 233–238 (1982). [CrossRef]
  43. C. Thibaudeau and A. Caillé, “The magnetic polaritons of a semi-infinite uniaxial antiferromagnet,” Solid State Commun. 87, 643–647 (1993). [CrossRef]
  44. J. Takahara and T. Kobayashi, “Low-dimensional optical waves and nano-optical circuits,” Opt. Photon. News 15(10), 54–59 (2004). [CrossRef]
  45. T. Inagaki, E. T. Arakawa, and M. W. Williams, “Optical properties of liquid mercury,” Phys. Rev. B 23, 5246–5262 (1981). [CrossRef]
  46. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theory Tech. 47, 2075–2084(1999). [CrossRef]
  47. C. G. Ribbing, H. Högström, and A. Rung, “Studies of polaritonic gaps in photonic crystals,” Appl. Opt. 45, 1575–1582 (2006). [CrossRef]
  48. C. H. R. Ooi, T. C. A. Yeung, C. H. Kam, and T. K. Lim, “Photonic band gap in a superconductor-dielectric superlattice,” Phys. Rev. B 61, 5920–5923 (2000). [CrossRef]
  49. T. van Duzer and C. W. Turner, Principles of Superconductive Devices and Circuits (Elsevier North-Holland, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited