OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2698–2703

Evolution of modes of Fabry–Perot cavity based on photonic crystal guided-mode resonance mirrors

Pierre Pottier, Lina Shi, and Yves-Alain Peter  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2698-2703 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002698


View Full Text Article

Enhanced HTML    Acrobat PDF (840 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe the modes of a Fabry–Perot cavity made of two-dimensional photonic crystal guided-mode resonance mirrors ( Si 3 N 4 / air ), and compare it with an ideal Fabry–Perot cavity and a cavity made of Bragg mirrors. As the evolution of modes is analyzed, a lower tuning efficiency and a larger tuning range are obtained compared to Bragg mirror cavities. New behavior also emerges such as the possibility to tune the inner interface from being a node to an antinode of the standing wave electric field, and therefore the possibility to provide enhancement of emission of nanoemitters binding to the inner interfaces of the cavity, such as in microfluidic microassay systems.

© 2012 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(230.4040) Optical devices : Mirrors
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals
(230.7408) Optical devices : Wavelength filtering devices

ToC Category:
Optical Devices

History
Original Manuscript: April 11, 2012
Revised Manuscript: August 15, 2012
Manuscript Accepted: August 15, 2012
Published: September 11, 2012

Citation
Pierre Pottier, Lina Shi, and Yves-Alain Peter, "Evolution of modes of Fabry–Perot cavity based on photonic crystal guided-mode resonance mirrors," J. Opt. Soc. Am. B 29, 2698-2703 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2698


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Iga, S. Kinoshita, and F. Koyama, “Microcavity GaAlAs/GaAs surface-emitting laser with Ith=6  mA,” Electron. Lett. 23, 134–136 (1987). [CrossRef]
  2. R. St-Gelais, A. Poulin, and Y.-A. Peter, “Advances in modeling, design, and fabrication of deep-etched multilayer resonators,” J. Lightwave Technol. 30, 1900–1908 (2012). [CrossRef]
  3. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18, 269–275 (1902). [CrossRef]
  4. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  5. M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-Verlag, 1980), pp. 123–157.
  6. V. N. Astratov, D. M. Whittaker, I. S. Culshaw, R. M. Stevenson, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, “Photonic band-structure effects in the reflectivity of periodically patterned waveguides,” Phys. Rev. B 60, R16255–R16258 (1999). [CrossRef]
  7. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002). [CrossRef]
  8. K. B. Crozier, V. Lousse, O. Kilic, S. Kim, S. Fan, and O. Solgaard, “Air-bridged photonic crystal slabs at visible and near-infrared wavelengths,” Phys. Rev. B 73, 115126 (2006). [CrossRef]
  9. S. Peng and G. M. Morris, “Experimental demonstration of resonant anomalies in diffraction from two-dimensional gratings,” Opt. Lett. 21, 549–551 (1996). [CrossRef]
  10. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022–1024 (1992). [CrossRef]
  11. S. Tibuleac and R. Magnusson, “Reflection and transmission guided-mode resonance filters,” J. Opt. Soc. Am. A 14, 1617–1626 (1997). [CrossRef]
  12. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photonics Technol. Lett. 16, 1676–1678 (2004). [CrossRef]
  13. O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, “Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders,” Opt. Lett. 29, 2782–2784 (2004). [CrossRef]
  14. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett. 82, 1999–2001 (2003). [CrossRef]
  15. S. Boutami, B. Benbakir, X. Letartre, J. L. Leclercq, P. Regreny, and P. Viktorovitch, “Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors,” Opt. Express 15, 12443–12449 (2007). [CrossRef]
  16. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007). [CrossRef]
  17. H. Y. Song, S. Kim, and R. Magnusson, “Tunable guided-mode resonances in coupled gratings,” Opt. Express 17, 23544–23555 (2009). [CrossRef]
  18. T. Stomeo, M. Grande, G. Rainò, A. Passaseo, A. D’Orazio, R. Cingolani, A. Locatelli, D. Modotto, C. De Angelis, and M. De Vittorio, “Optical filter based on two coupled PhC GaAs-membranes,” Opt. Lett. 35, 411–413 (2010). [CrossRef]
  19. D. Zhao, Z. Ma, and W. Zhou, “Field penetrations in photonic crystal Fano reflectors,” Opt. Express 18, 14152–14158(2010). [CrossRef]
  20. S. Larouche and L. Martinu, “OpenFilters: open-source software for the design, optimization, and synthesis of optical Filters,” Appl. Opt. 47, C219–C230 (2008). [CrossRef]
  21. P. Yeh, Optical Waves in Layered Media (Wiley, 1988), pp. 144–165.
  22. L. Shi, P. Pottier, M. Skorobogatiy, and Y.-A. Peter, “Tunable structures comprising two photonic crystal slabs—optical study in view of multi-analyte enhanced detection,” Opt. Express 17, 10623–10632 (2009). [CrossRef]
  23. P. Pottier, L. Shi, and Y.-A. Peter, “Determination of guided-mode resonances in photonic crystal slabs,” J. Opt. Soc. Am. B 29, 109–117 (2012). [CrossRef]
  24. J. H. (E.) Kim, L. Chrostowski, E. Bisaillon, and D. V. Plant, “DBR, Sub-wavelength grating, and Photonic crystal slab Fabry-Perot cavity design using phase analysis by FDTD,” Opt. Express 15, 10330–10339 (2007). [CrossRef]
  25. S. Boutami, B. Ben Bakir, H. Hattori, X. Letartre, J.-L. Leclercq, P. Rojo-Romeo, M. Garrigues, C. Seassal, and P. Viktorovitch, “Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence,” IEEE Photonics Technol. Lett. 18, 835–837 (2006). [CrossRef]
  26. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, “A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings,” Opt. Express 17, 1508–1517 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited