OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2704–2709

Broadband phase retarder based on one-dimensional photonic crystal containing mu-negative materials

Xiao Zhang and Yihang Chen  »View Author Affiliations

JOSA B, Vol. 29, Issue 10, pp. 2704-2709 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (750 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phase shift upon reflection from one-dimensional photonic crystal composed of alternating layers of mu-negative materials and positive-index materials is numerically investigated. It is found that the phase difference between TE and TM reflected waves can remain constant in a rather wide frequency range within the single-negative gap of the proposed structure. Such property can be used to design broadband phase retarder. By varying the incident angle, the phase difference of the retarder can be adjusted from 0 to π, while the working frequency range of the retarder remains almost unchanged. Moreover, by varying the scaling factor or the thickness ratio of the two constituent materials, the working frequency range of the phase retarder can be conveniently tuned.

© 2012 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(160.3918) Materials : Metamaterials
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Diffraction and Gratings

Original Manuscript: June 20, 2012
Revised Manuscript: August 10, 2012
Manuscript Accepted: August 14, 2012
Published: September 11, 2012

Xiao Zhang and Yihang Chen, "Broadband phase retarder based on one-dimensional photonic crystal containing mu-negative materials," J. Opt. Soc. Am. B 29, 2704-2709 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  3. V. N. Konopsky and E. V. Alieva, “Long-range propagation of plasmon polaritons in a thin metal film on a one-dimensional photonic crystal surface,” Phys. Rev. Lett. 97, 253904 (2006). [CrossRef]
  4. C. E. Ruter and D. Kip, “Spectroscopy of nonlinear band structures of one-dimensional photonic crystals,” Phys. Rev. A 77, 013818 (2008). [CrossRef]
  5. M. de Dios-Leyva and O. E. Gonzalez-Vasquez, “Band structure and associated electromagnetic fields in one-dimensional photonic crystals with left-handed materials,” Phys. Rev. B 77, 125102 (2008). [CrossRef]
  6. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537–1539 (1999). [CrossRef]
  7. A. Hache and L. Poirier, “Long-range superluminal pulse propagation in a coaxial photonic crystal,” Appl. Phys. Lett. 80, 518–520 (2002). [CrossRef]
  8. Q. F. Dai, Y. W. Li, and H. Z. Wang, “Broadband two-dimensional photonic crystal wave plate,” Appl. Phys. Lett. 89, 061121 (2006). [CrossRef]
  9. W. F. Zhang, J. H. Liu, W. P. Huang, and W. Zhao, “Self-collimating photonic-crystal wave plates,” Opt. Lett. 34, 2676–2678 (2009). [CrossRef]
  10. Q. F. Dai, S. La, L. J. Wu, and H. Z. Wang, “Phase properties of reflected light in photonic band gap,” J. Appl. Phys. 107, 093108 (2010). [CrossRef]
  11. F. Miyamaru, T. Kondo, T. Nagashima, and M. Hangyo, “Large polarization change in two-dimensional metallic photonic crystals in subterahertz region,” Appl. Phys. Lett. 82, 2568–2570 (2003). [CrossRef]
  12. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Experimental demonstration of photonic crystal waveplates,” Appl. Phys. Lett. 82, 1036–1038 (2003). [CrossRef]
  13. E. Istrate and E. H. Sargent, “Measurement of the phase shift upon reflection from photonic crystals,” Appl. Phys. Lett. 86, 151112 (2005). [CrossRef]
  14. D. R. Fredkin and A. Ron, “Effectively left-handed (negative index) composite material,” Appl. Phys. Lett. 81, 1753–1755 (2002). [CrossRef]
  15. A. Alu and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003). [CrossRef]
  16. H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607(2004). [CrossRef]
  17. L. G. Wang, H. Chen, and S. Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004). [CrossRef]
  18. Y. H. Chen, J. W. Dong, and H. Z. Wang, “Twin defect modes in one-dimensional photonic crystals with a single-negative material defect,” Appl. Phys. Lett. 89, 141101 (2006). [CrossRef]
  19. T. B. Wang, J. W. Dong, C. P. Yin, and H. Z. Wang, “Complete evanescent tunneling gaps in one-dimensional photonic crystals,” Phys. Lett. A 373, 169–172 (2008). [CrossRef]
  20. Y. H. Chen, “Unusual transmission bands of one-dimensional photonic crystals containing single-negative materials,” Opt. Express 17, 20333–20341 (2009). [CrossRef]
  21. Y. T. Fang, J. Zhou, and E. Y. B. Pun, “High-Q filters based on one-dimensional photonic crystals using epsilon-negative materials,” Appl. Phys. B Lasers Opt. 86, 587–591 (2007). [CrossRef]
  22. X. H. Deng and N. H. Liu, “Resonant tunneling properties of photonic crystals containing mu-negative materials,” J. Phys. D 42, 045420 (2009). [CrossRef]
  23. Y. G. Chen, Y. Zhang, and S. T. Liu, “Investigation of one-dimensional photonic crystals composed of dispersive materials,” Opt. Commun. 265, 542–550 (2006). [CrossRef]
  24. G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microwave Theor. Tech. 50, 2702–2712 (2002). [CrossRef]
  25. R. P. Liu, B. Zhao, X. Q. Lin, Q. Cheng, and T. J. Cui, “Evanescent-wave amplification studied using a bilayer periodic circuit structure and its effective medium model,” Phys. Rev. B 75, 125118 (2007). [CrossRef]
  26. Y. H. Chen, X. G. Wang, F. W. Ye, P. F. Lee, and B. B. Hu, “Multichannel and omnidirectional transparency in periodic metamaterial layers,” Appl. Phys. B Lasers Opt. 107, 771–778 (2012). [CrossRef]
  27. Y. H. Chen, W. X. Wang, Z. H. Yong, Y. J. Zhang, and Z. F. Chen, “Experimental investigation of photonic band gap in one-dimensional photonic,” Phys. Lett. A 376, 1396–1400(2012). [CrossRef]
  28. M. Born and E. Wolf, Principles of Optics, 7th (expanded) ed. (Cambridge University, 1999).
  29. M. Z. Ali and T. Abdullah, “Properties of the angular gap in a one dimensional photonic band gap structure containing single negative materials,” Phys. Lett. A 372, 1695–1700(2008). [CrossRef]
  30. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, “Magnetic response of metamaterials at 100 terahertz,” Science 306, 1351–1353(2004). [CrossRef]
  31. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, “Terahertz magnetic response from artificial materials,” Science 303, 1494–1496 (2004). [CrossRef]
  32. C. M. Soukoulis, S. Linden, and M. Wegener, “Negative refractive index at optical wavelengths,” Science 315, 47–49 (2007). [CrossRef]
  33. J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science 321, 930(2008). [CrossRef]
  34. T. Decoopman, G. Tayeb, S. Enoch, D. Maystre, and B. Gralak, “Photonic crystal lens: from negative refraction and negative index to negative permittivity and permeability,” Phys. Rev. Lett. 97, 0739059 (2006). [CrossRef]
  35. S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observation of zeroth-order band gaps in negative-refraction photonic crystal superlattices at near-infrared frequencies,” Phys. Rev. Lett. 102, 203509 (2009). [CrossRef]
  36. S. P. Burgos, R. D. Waele, A. Polman, and H. A. Atwater, “A single-layer wide-angle negative-index metamaterial at visible frequencies,” Nat. Mater. 9, 407–412 (2010). [CrossRef]
  37. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331, 290–291 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited