OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2710–2720

Theory of polarization attraction in parametric amplifiers based on telecommunication fibers

Massimiliano Guasoni, Victor V. Kozlov, and Stefan Wabnitz  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2710-2720 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002710


View Full Text Article

Enhanced HTML    Acrobat PDF (431 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop from first principles the coupled wave equations that describe polarization-sensitive parametric amplification based on four-wave mixing (FWM) in standard (randomly birefringent) optical fibers. We show that in the small-signal case these equations can be solved analytically, and permit us to predict the gain experienced by the signal beam as well as its state of polarization (SOP) at the fiber output. We find that, independently of its initial value, the output SOP of a signal within the parametric gain bandwidth is solely determined by the pump SOP. We call this effect of pulling the polarization of the signal towards a reference SOP the polarization attraction, and we call the parametric amplifier the FWM polarizer (which can equivalently be called the fiber-optic parametric amplifier polarizer). Our theory is valid beyond the zero polarization mode dispersion (PMD) limit, and it takes into account moderate deviations of the PMD from zero. In particular, our theory is capable of analytically predicting the rate of degradation of the efficiency of the parametric amplifier, which is caused by the detrimental PMD effect.

© 2012 Optical Society of America

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(230.1150) Optical devices : All-optical devices
(230.4320) Optical devices : Nonlinear optical devices
(230.5440) Optical devices : Polarization-selective devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 25, 2012
Revised Manuscript: July 30, 2012
Manuscript Accepted: August 6, 2012
Published: September 11, 2012

Citation
Massimiliano Guasoni, Victor V. Kozlov, and Stefan Wabnitz, "Theory of polarization attraction in parametric amplifiers based on telecommunication fibers," J. Opt. Soc. Am. B 29, 2710-2720 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2710


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. Heebner, R. S. Bennink, R. W. Boyd, and R. A. Fisher, “Conversion of unpolarized light to polarized light with greater than 50% efficiency by photorefractive two-beam coupling,” Opt. Lett. 25, 257–259 (2000). [CrossRef]
  2. S. Pitois, G. Millot, and S. Wabnitz, “Nonlinear polarization dynamics of counterpropagating waves in an isotropic optical fiber: theory and experiments,” J. Opt. Soc. Am. B 18, 432–443 (2001). [CrossRef]
  3. S. Pitois, J. Fatome, and G. Millot, “Polarization attraction using counter-propagating waves in optical fiber at telecommunication wavelengths,” Opt. Express 16, 6646–6651 (2008). [CrossRef]
  4. S. Pitois, A. Picozzi, G. Millot, H. R. Jauslin, and M. Haelterman, “Polarization and modal attractors in conservative counterpropagating four-wave interaction,” Europhys. Lett. 70, 88–94 (2005). [CrossRef]
  5. J. Fatome, S. Pitois, P. Morin, and G. Millot, “Observation of light-by-light polarization control and stabilization in optical fibre for telecommunication applications,” Opt. Express 18, 15311–15317 (2010). [CrossRef]
  6. V. V. Kozlov, K. Turitsyn, and S. Wabnitz, “Nonlinear repolarization in optical fibers: polarization attraction with copropagating beams,” Opt. Lett. 36, 4050–4052 (2011). [CrossRef]
  7. P. Morin, J. Fatome, C. Finot, S. Pitois, R. Claveau, and G. Millot, “All-optical nonlinear processing of both polarization state and intensity profile for 40  Gbit/s regeneration applications,” Opt. Express 19, 17158–17166 (2011). [CrossRef]
  8. V. V. Kozlov, J. Nun¯o, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers,” J. Opt. Soc. Am. B 28, 100–108 (2011). [CrossRef]
  9. V. V. Kozlov, and S. Wabnitz, “Theoretical study of polarization attraction in high-birefringence and spun fibers,” Opt. Lett. 35, 3949–3951 (2010). [CrossRef]
  10. D. Sugny, A. Picozzi, S. Lagrange, and H. R. Jauslin, “Role of singular tori in the dynamics of spatiotemporal nonlinear wave systems,” Phys. Rev. Lett. 103, 034102 (2009). [CrossRef]
  11. E. Assémat, S. Lagrange, A. Picozzi, H. R. Jauslin, and D. Sugny, “Complete nonlinear polarization control in an optical fiber system,” Opt. Lett. 35, 2025–2027 (2010). [CrossRef]
  12. S. Lagrange, D. Sugny, A. Picozzi, and H. R. Jauslin, “Singular tori as attractors of four-wave-interaction systems,” Phys. Rev. E 81, 016202 (2010). [CrossRef]
  13. E. Assémat, D. Dargent, A. Picozzi, H. R. Jauslin, and D. Sugny, “Polarization control in spun and telecommunication optical fibers,” Opt. Lett. 36, 4038–4040 (2011). [CrossRef]
  14. E. Assémat, A. Picozzi, H. R. Jauslin, and D. Sugny, “Hamiltonian tools for the analysis of optical polarization control,” J. Opt. Soc. Am. B 29, 559–571 (2012). [CrossRef]
  15. M. Martinelli, M. Cirigliano, M. Ferrario, L. Marazzi, and P. Martelli, “Evidence of Raman-induced polarization pulling,” Opt. Express 17, 947–955 (2009). [CrossRef]
  16. V. V. Kozlov, J. Nun¯o, J. D. Ania-Castañón, and S. Wabnitz, “Theory of fiber optic Raman polarizers,” Opt. Lett. 35, 3970–3972 (2010). [CrossRef]
  17. V. V. Kozlov, Javier Nuño, Diego Juan Ania-Castañón, and S. Wabnitz, “Theoretical study of optical fiber Raman polarizers with counterpropagating beams,” J. Lightwave Technol. 29, 341–347 (2011). [CrossRef]
  18. L. Ursini, M. Santagiustina, and L. Palmieri, “Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers,” IEEE Photon. Technol. Lett. 23, 254–256 (2011). [CrossRef]
  19. F. Chiarello, L. Ursini, L. Palmieri, and M. Santagiustina, “Polarization attraction in counterpropagating fiber Raman amplifiers,” IEEE Photon. Technol. Lett. 23, 1457–1459 (2011). [CrossRef]
  20. V. V. Kozlov, and S. Wabnitz, “Suppression of relative intensity noise in fiber-optic Raman polarizers,” IEEE Photon. Technol. Lett. 23, 1088–1090 (2011). [CrossRef]
  21. S. Sergeyev, and S. Popov, “Two-section fiber optic Raman polarizer,” IEEE J. Quantum Electron. 48, 56–60 (2012). [CrossRef]
  22. V. V. Kozlov, J. Nun¯o, J.-D. Ania-Castañón, and S. Wabnitz, Trapping Polarization of Light in Nonlinear Optical Fibers: An Ideal Raman Polarizer (Springer-Verlag, 2012).
  23. Nelson J. Muga, Mario F. S. Ferreira, and Armando N. Pinto, “Broadband polarization pulling using Raman amplification,” Opt. Express 19, 18707–18712 (2011). [CrossRef]
  24. A. Zadok, E. Zilka, A. Eyal, L. Thevenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16, 21692–21707 (2008). [CrossRef]
  25. Q. Lin, and G. P. Agrawal, “Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers,” J. Opt. Soc. Am. B 20, 1616–1631 (2003). [CrossRef]
  26. V. V. Kozlov, and S. Wabnitz, “Silicon Raman polarizer,” Opt. Lett. 37, 737–739 (2012). [CrossRef]
  27. C. McKinstrie, H. Kogelnik, R. Jopson, S. Radic, and A. Kanaev, “Four-wave mixing in fibers with random birefringence,” Opt. Express 12, 2033–2055 (2004). [CrossRef]
  28. M. Guasoni and S. Wabnitz, “Nonlinear polarizers based on four-wave mixing in high birefringence optical fibers,” J. Opt. Soc. Am. B29, in press (2012).
  29. Q. Lin, and G. P. Agrawal, “Vector theory of four-wave mixing: polarization effects in fiber-optic parameteric amplifiers,” J. Opt. Soc. Am. B 21, 1216–1224 (2004). [CrossRef]
  30. Q. Lin, and G. P. Agrawal, “Effects of polarization-mode dispersion on fiber-based parametric amplification and wavelength conversion,” Opt. Lett. 29, 1114–1116 (2004). [CrossRef]
  31. J. F. L. Freitas, C. J. S. de Matos, M. B. Costa e Silva, and A. S. L. Gomes, “Impact of phase modulation and parametric gain on signal polarization in an anomalously dispersive optical fiber,” J. Opt. Soc. Am. B 24, 1469–1474 (2007). [CrossRef]
  32. S. Wabnitz, “Broadband parametric amplification in photonic crystal fibers with two zero-dispersion wavelengths,” J. Lightwave Technol. 24, 1732–1738 (2006). [CrossRef]
  33. P. K. A. Wai, and C. R. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Lightwave Technol. 14, 148–157 (1996). [CrossRef]
  34. W. Magnus, “On the exponential solution of differential equations for a linear operator,” Commun. Pure Appl. Math. 7, 649–673 (1954). [CrossRef]
  35. V. V. Kozlov, J. Nun¯o, and S. Wabnitz, “Theory of lossless polarization attraction in telecommunication fibers: erratum,” J. Opt. Soc. Am. B 29, 153–154 (2012). [CrossRef]
  36. V. V. Kozlov and S. Wabnitz, “Suppression of relative intensity noise in fiber-optic Raman polarizers,” IEEE Photon. Technol. Lett. 23, 1088–1090 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited