OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2721–2728

Polarization characteristics of nonlinear refraction and nonlinear scattering in several solvents

Xiao-Qing Yan, Zhi-Bo Liu, Yong-Sheng Chen, and Jian-Guo Tian  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2721-2728 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002721


View Full Text Article

Enhanced HTML    Acrobat PDF (654 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The polarization characteristics of nonlinear refraction and nonlinear scattering in several solvents (toluene, o-dichlorobenzene, N, N-dimethylformamide) are studied using the polarized light Z-scan technique with femtosecond laser pulses. For nonlinear refraction, the physical mechanism of the polarization characteristics is that the nonlinear polarization component related to Re(χxyyx(3)) could be adjusted by polarization state of incident light in isotropic media. For nonlinear scattering, the polarization characteristic is related to the self-focusing effect, which depends on the nonlinear refractive index and polarization state of incident light. In addition, the values of nonlinear refractive indices and third-order nonlinear susceptibility components are determined for these solvents at the femtosecond time scale. Both nonresonant electronic nonlinearity and fast noninstantaneous nuclear nonlinearity contribute to these values at the pulse width used in the measurements. Also, these nonlinear refractive indices and third-order nonlinear susceptibility components could be used in calculating nonlinear optical parameters of those novel materials that need to be dissolved in these solvents in nonlinear optical measurements.

© 2012 Optical Society of America

OCIS Codes
(120.6710) Instrumentation, measurement, and metrology : Susceptibility
(190.5890) Nonlinear optics : Scattering, stimulated
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(290.5855) Scattering : Scattering, polarization

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 22, 2012
Revised Manuscript: July 21, 2012
Manuscript Accepted: August 6, 2012
Published: September 11, 2012

Citation
Xiao-Qing Yan, Zhi-Bo Liu, Yong-Sheng Chen, and Jian-Guo Tian, "Polarization characteristics of nonlinear refraction and nonlinear scattering in several solvents," J. Opt. Soc. Am. B 29, 2721-2728 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2721


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Yu. P. Svirko and N. I. Zheludev, Polarization of Light in Nonlinear Optics, Wiley-VCH (2000).
  2. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997). [CrossRef]
  3. D. C. Hutchings, J. S. Aitchison, B. S. Wherrett, G. T. Kennedy, and W. Sibbett, “Polarization dependence of ultrafast nonlinear refraction in an AlGaAs waveguide at the half-band gap,” Opt. Lett. 20, 991–993 (1995). [CrossRef]
  4. P. R. Monson and W. M. McClain, “Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid 1-chloronaphthalene and benzene,” J. Chem. Phys. 53, 29–37 (1970). [CrossRef]
  5. M. C. Downer and A. Bivas, “Third- and fourth-order analysis of the intensities and polarization dependence of two-photon absorption lines of Gd3+ in LaF3 and aqueous solution,” Phys. Rev. B 28, 3677–3696 (1983). [CrossRef]
  6. J. O’Dowd, W. H. Guo, M. Lynch, E. Flood, A. L. Bradley, and J. F. Donegan, “Description of polarisation dependence of two-photon absorption in silicon avalanche photodiodes,” Electron Lett. 46, 854–856 (2010). [CrossRef]
  7. M. Oskar van Deventer and Andre J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12585–590(1994). [CrossRef]
  8. S. Odoulov, B. Sturman, L. Holtmann, and E. Kraitzig, “Nonlinear scattering in BaTiO3 induced by two orthogonally polarized waves,” Appl. Phys. B 52, 317–322 (1991). [CrossRef]
  9. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  10. R. L. Sutherland, Handbook of Nonlinear Optics (Dekker, 1996).
  11. X. Q. Yan, Z. B. Liu, X. L. Zhang, W. Y. Zhou, and J. G. Tian, “Polarization dependence of Z-scan measurement: theory and experiment,” Opt. Express 17, 6397–6406 (2009). [CrossRef]
  12. X. Q. Yan, Z. B. Liu, X. L. Zhang, W. P. Zang, and J. G. Tian, “Modified elliptically polarized light Z-scan method for studying third-order nonlinear susceptibility components,” Opt. Express 18, 10270–10281 (2010). [CrossRef]
  13. X. Q. Yan, X. L. Zhang, S. Shi, Z. B. Liu, and J. G. Tian, “Third-order nonlinear susceptibility tensor elements of CS2 at femtosecond time scale,” Opt. Express 19, 5559–5564 (2011). [CrossRef]
  14. S. A. Akhmanov, A. P. Sukhorukov, and R. V. Khokhlov, “Self-focusing and diffraction of light in a nonlinear medium,” Sov. Phys. Usp. 10, 609–636 (1968). [CrossRef]
  15. R. W. Boyd, S. G. Lukishova, and Y.-R. Shen, Self-Focusing: Past and Present. Fundamentals and Prospects (Springer, 2009).
  16. http://en.wikipedia.org/wiki/Self-focusing .
  17. D. Auric and A. Labadens, “On the use of a circularly polarized beam to reduce the self focusing effect in a glass rod amplifier,” Opt. Commun. 21, 241–242 (1977). [CrossRef]
  18. G. Fibich and B. Ilan, “Self-focusing of circularly polarized beams,” Phys. Rev. E 67, 036622 (2003). [CrossRef]
  19. L. A. Patel, “Effect of self-focusing on scattering of a laser beam in a collisional plasma,” J. Phys. D 11, 347–354 (1978). [CrossRef]
  20. B. L. Justus, A. J. Campillo, and A. L. Huston, “Thermal-defocusing/scattering optical limiter,” Opt. Lett. 19, 673–675 (1994). [CrossRef]
  21. H. Yu and S. Meng, “Transient stimulated Brillouin scattering and damage of optical glass,” J. Appl. Phys. 81, 85–88 (1997). [CrossRef]
  22. A. A. Manenkov and A. M. Prokhorov, “Laser-induced damage in solids,” Sov. Phys. Usp. 29, 104–122 (1986). [CrossRef]
  23. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, and A. Mysyrowicz, “Femtosecond laser-induced damage and filamentary propagation in fused silica,” Phys. Rev. Lett. 89, 186601 (2002). [CrossRef]
  24. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996). [CrossRef]
  25. A.-C. Tien, S. Backus, H. Kapteyn, M. Murnane, and G. Mourou, “Short-pulse laser damage in transparent materials as a function of pulse duration,” Phys. Rev. Lett. 82, 3883–3886 (1999). [CrossRef]
  26. T. S. Luk, S. Xiong, W. W. Chow, X. Miao, G. Subramania, P. J. Resnick, A. J. Fischer, and J. C. Brinker, “Anomalous enhanced emission from PbS quantum dots on a photonic-crystal microcavity,” J. Opt. Soc. Am. B 28, 1365–1373 (2011). [CrossRef]
  27. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12, 1784–1794 (2001). [CrossRef]
  28. D. Neher, G. I. Stegeman, F. A. Tinker, and N. Peyghambarian, “Nonlinear optical response of C60 and C70,” Opt. Lett. 17, 1491–1493 (1992). [CrossRef]
  29. Y. Liu, J. Zhou, X. Zhang, Z. Liu, X. Wan, J. Tian, T. Wang, and Y. Chen, “Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material,” Carbon 47, 3113–3121 (2009). [CrossRef]
  30. X. L. Zhang, X. Zhao, Z. B. Liu, Y. S. Liu, Y. S. Chen, and J. G. Tian, “Enhanced nonlinear optical properties of graphene-oligothiophene hybrid material,” Opt. Express 17, 23959–23964 (2009). [CrossRef]
  31. N. Venkatram, D. Narayana Rao, and M. A. Akundi, “Nonlinear absorption, scattering and optical limiting studies of CdS nanoparticles,” Opt. Express 13, 867–872 (2005). [CrossRef]
  32. M. Sheikh-Bahae, A. A. Said, T. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  33. K. Y. Tseng, K. S. Wong, and G. K. L. Wong, “Femtosecond time-resolved Z-scan investigations of optical nonlinearities in ZnSe,” Opt. Lett. 21, 180–182 (1996). [CrossRef]
  34. T. D. Krauss and F. W. Wise, “Femtosecond measurement of nonlinear absorption and refraction in CdS, ZnSe, and ZnS,” Appl. Phys. Lett. 65, 1739 (1994). [CrossRef]
  35. X. Q. Yan, Z. B. Liu, S. Shi, W. Y. Zhou, and J. G. Tian, “Analysis on the origin of the ultrafast optical nonlinearity of carbon disulfide around 800 nm,” Opt. Express 18, 26169–26174 (2010). [CrossRef]
  36. B. Gu, J. He, W. Ji, and H. T. Wang, “Three-photon absorption saturation in ZnO and ZnS crystals,” J. Appl. Phys. 103, 073105 (2008). [CrossRef]
  37. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, and X. Michaut, “An experimental investigation of the nonlinear refractive index (n2) of carbon disulfide and toluene by spectral shearing interferometry and z-scan techniques,” Chem. Phys. Lett. 369, 318–324 (2003). [CrossRef]
  38. C. Kalpouzos, W. T. Lotshaw, D. McMorrow, and G. A. Kenney-Wallace, “Femtosecond laser-induced Kerr responses in liquid CS2,” J. Phys. Chem. 91, 2028–2030 (1987). [CrossRef]
  39. Y. Sato, R. Morita, and M. Yamashita, “Study on ultrafast dynamic behaviors of different nonlinear refractive index components in CS2 using a femtosecond interferometer,” Jpn. J. Appl. Phys. 36, 2109–2115 (1997). [CrossRef]
  40. D. von der Linde and H. Schüler, “Breakdown threshold and plasma formation in femtosecond laser–solid interaction,” J. Opt. Soc. Am. B 13, 216–222 (1996). [CrossRef]
  41. R. A. Ganeev, A. I. Ryasnyanskii, and H. Kuroda, “Nonlinear optical characteristics of carbon disulfide,” Opt. Spectrosc. 100, 108–118 (2006). [CrossRef]
  42. D. Wang and G. Rivoire, “Large spectral bandwidth stimulated Rayleigh-wing scattering in CS2,” J. Chem. Phys. 98, 9279–9283 (1993). [CrossRef]
  43. D. S. Viswanath, T. K. Ghosh, D. H. L. Prasad, N. V. K. Dutt, and K. Y. Rani, Viscosity of Liquids: Theory, Estimation, Experiment, and Data (Springer, 2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited