OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2749–2753

Implementation of a quantum cloning machine via an ion-trap system

Tao Wu, Bao-Long Fang, and Liu Ye  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2749-2753 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002749


View Full Text Article

Enhanced HTML    Acrobat PDF (132 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a scheme to realize a quantum cloning machine in an ion-trap system. In the scheme, the optimal 12 symmetric universal quantum cloning and the optimal 12 phase-covariant quantum cloning can be realized. The required experimental techniques of the scheme are in the range of what can be obtained in the ion-trap setup. Therefore, the scheme can be realized with presently available ion-trap techniques.

© 2012 Optical Society of America

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(270.5580) Quantum optics : Quantum electrodynamics
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: April 5, 2012
Revised Manuscript: August 8, 2012
Manuscript Accepted: August 9, 2012
Published: September 14, 2012

Citation
Tao Wu, Bao-Long Fang, and Liu Ye, "Implementation of a quantum cloning machine via an ion-trap system," J. Opt. Soc. Am. B 29, 2749-2753 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2749


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802–803 (1982). [CrossRef]
  2. A. K. Parti and S. L. Braunstein, “Quantum deleting and signaling,” Phys. Lett. A 315, 208–212 (2003). [CrossRef]
  3. D. Bruss, D. P. DiVincenzo, A. Ekert, C. A. Fuchs, C. Macchiavello, and J. A. Smolin, “Optimal universal and state-dependent quantum cloning,” Phys. Rev. A 57, 2368–2378 (1998). [CrossRef]
  4. D. Bruss, A. Ekert, and C. Macchiavello, “Optimal universal quantum cloning and state estimation,” Phys. Rev. Lett. 81, 2598–2601 (1998). [CrossRef]
  5. L. M. Duan and G. C. Guo, “Probabilistic cloning and identification of linearly independent quantum states,” Phys. Rev. Lett. 80, 4999–5002 (1998). [CrossRef]
  6. L. M. Duan and G. C. Guo, “A probabilistic cloning machine for replicating two non-orthogonal states,” Phys. Lett. A 243, 261–264 (1998). [CrossRef]
  7. V. Bužek and M. Hillery, “Quantum copying: beyond the nocloning theorem,” Phys. Rev. A 54, 1844–1852 (1996). [CrossRef]
  8. R. F. Werner, “Optimal cloning of pure states,” Phys. Rev. A 58, 1827–1832 (1998). [CrossRef]
  9. N. J. Cerf, “Pauli cloning of a quantum bit,” Phys. Rev. Lett. 84, 4497–4500 (2000). [CrossRef]
  10. H. Fan, H. Imai, K. Matsumoto, and X. B. Wang, “Phase-covariant quantum cloning of qudits,” Phys. Rev. A 67, 022317 (2003). [CrossRef]
  11. D. Bruss, M. Cinchetti, G. M. D’Ariano, and C. Macchiavello, “Phase-covariant quantum cloning,” Phys. Rev. A 62, 012302 (2000). [CrossRef]
  12. P. Navez and N. J. Cerf, “Cloning a real d-dimensional quantum state on the edge of the no-signaling condition,” Phys. Rev. A 68, 032313 (2003). [CrossRef]
  13. W. H. Zhang, L. B. Yu, and L. Ye, “Optimal asymmetric phase-covariant quantum cloning,” Phys. Lett. A 356, 195–198 (2006). [CrossRef]
  14. W. H. Zhang and L. Ye, “Optimal asymmetric phase-covariant and real state cloning in d dimensions,” New J. Phys. 9, 318 (2007). [CrossRef]
  15. W. H. Zhang, J. Wang, L. Ye, and J. L. Dai, “Suboptimal asymmetric economical phase-covariant quantum cloning and telecloning in d-dimension,” Phys. Lett. A 369, 112–119 (2007). [CrossRef]
  16. W. H. Zhang, L. B. Yu, L. Ye, and J. L. Dai, “Optimal symmetric economical phase-covariant quantum cloning,” Phys. Lett. A 360, 726–730 (2007). [CrossRef]
  17. F. Buscemi, G. M. D’Ariano, and C. Macchiavello, “Economical phase-covariant cloning of qudits,” Phys. Rev. A 71, 042327 (2005). [CrossRef]
  18. C. S. Niu, and R. B. Griffiths, “Two-qubit copying machine for economical quantum eavesdropping,” Phys. Rev. A 60, 2764 (1999). [CrossRef]
  19. J. Fiurášek, “Optical implementations of the optimal phase-covariant quantum cloning machine,” Phys. Rev. A 67, 052314 (2003). [CrossRef]
  20. T. Durt, J. Fiurasek, and N. J. Cerf, “Economical quantum cloning in any dimension,” Phys. Rev. A 72, 052322 (2005). [CrossRef]
  21. T. Durt, and J. Du, “Characterization of low-cost one-to-two qubit cloning,” Phys. Rev. A 69, 062316 (2004). [CrossRef]
  22. W. H. Zhang, T. Wu, L. Ye, and J. L. Dai, “Optimal real state cloning in d dimensions,” Phys. Rev. A 75, 044303 (2007). [CrossRef]
  23. B. L. Fang and L. Ye, “Realization of a phase-covariant and real state qubit quantum cloning machine,” Phys. Lett. A 374, 1966 (2010). [CrossRef]
  24. W. Xiong, and L. Ye, “Optimal real state quantum cloning machine in cavity quantum electrodynamics,” J. Opt. Soc. Am. B 28, 2260–2264 (2011). [CrossRef]
  25. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74, 145–195 (2002). [CrossRef]
  26. V. Scarani, S. Iblisdir, and N. Gisin, “Quantum cloning,” Rev. Mod. Phys. 77, 1225–1256 (2005). [CrossRef]
  27. C. Simon, G. Weihs, and A. Zeilinger, “Optimal quantum cloning via stimulated emission,” Phys. Rev. Lett. 84, 2993–2996 (2000). [CrossRef]
  28. L. B. Yu, W. H. Zhang, and L. Ye, “Implementing an ancilla-free 1→M economical phase-covariant quantum cloning machine with superconducting quantum-interference devices in cavity QED,” Phys. Rev. A 76, 034303 (2007). [CrossRef]
  29. B. L. Fang, Z. Yang, and L. Ye, “Realizing a partial general quantum cloning machine with superconducting quantum-interference devices in a cavity QED,” Phys. Rev. A 79, 054308 (2009). [CrossRef]
  30. P. Milman, H. Ollivier, and J. M. Raimond, “Universal quantum cloning in cavity QED,” Phys. Rev. A 67, 012314 (2003). [CrossRef]
  31. X. B. Zou, K. Pahlke, and W. Mathis, “Scheme for the implementation of a universal quantum cloning machine via cavity-assisted atomic collisions in cavity QED,” Phys. Rev. A 67, 024304 (2003). [CrossRef]
  32. W. Song, M. Yang, and Z. L. Cao, “Scheme for the implementation of optimal phase-covariant quantum cloning for equatorial qubits,” Phys. Lett. A 331, 34–38 (2004). [CrossRef]
  33. W. H. Zhang, and L. Ye, “Scheme to implement general economical phase-covariant telecloning,” Phys. Lett. A 353, 130–137 (2006). [CrossRef]
  34. W. H. Zhang, and L. Ye, “Cavity-QED scheme to implement the optimal symmetric approximate quantum telecloning,” Phys. Lett. A 354, 344–352 (2006). [CrossRef]
  35. B. L. Fang, T. Wu, and L Ye, “Realization of a general quantum cloning machine via cavity-assisted interaction,” Europhys. Lett. 97, 60002 (2012). [CrossRef]
  36. B. L. Fang, Q. M. Song, and L. Ye, “Realization of a universal and phase-covariant quantum cloning machine in separate cavities,” Phys. Rev. A 83, 042309 (2011). [CrossRef]
  37. B. L. Fang, T. Wu, and L Ye, “Realization of an economical phase-covariant telecloning in separate cavities,” Quantum Inf. Comput. 12, 0334–0345 (2012).
  38. A. Lamas-Linares, C. Simon, J. C. Howell, and D. Bouwmeester, “Experimental quantum cloning of single photons,” Science 296, 712–714 (2002). [CrossRef]
  39. A. Černoch, L. Bartůšková, J. Soubusta, M. Ježek, J. Fiurášek, and M. Dušek, “Experimental phase-covariant cloning of polarization states of single photons,” Phys. Rev. A 74, 042327 (2006). [CrossRef]
  40. J. F. Du, T. Durt, P. Zou, H. Li, L. C. Kwek, C. H. Lai, C. H. Oh, and A. Ekert, “Experimental quantum cloning with prior partial information,” Phys. Rev. Lett. 94, 040505 (2005). [CrossRef]
  41. H. K. Cummins, C. Jones, A. Furze, N. F. Soffe, M. Mosca, J. M. Peach, and J. A. Jones, “Approximate quantum cloning with nuclear magnetic resonance,” Phys. Rev. Lett. 88, 187901 (2002). [CrossRef]
  42. H. W. Chen, X. Y. Zhou, D. Suter, and J. F. Du, “Experimental realization of 1→2 asymmetric phase-covariant quantum cloning,” Phys. Rev. A 75, 012317 (2007). [CrossRef]
  43. D. L. Moehring, M. J. Madsen, B. B. Blinov, and C. Monroe, “Experimental Bell inequality violation with an atom and a photon,” Phys. Rev. Lett. 93, 090410 (2004). [CrossRef]
  44. R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature 443, 838–841 (2006). [CrossRef]
  45. K. Mølmer and A. Sørensen, “Multiparticle entanglement of hot trapped ions,” Phys. Rev. Lett. 82, 1835–1838 (1999). [CrossRef]
  46. C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette, W. M. Itano, D. J. Wineland, and C. Monroe, “Experimental entanglement of four particles,” Nature 404, 256–259 (2000). [CrossRef]
  47. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and R. Blatt, “Realization of the Cirac–Zoller controlled-NOT quantum gate,” Nature 422, 408–411 (2003). [CrossRef]
  48. J. Chiaverini, J. Britton, D. Leibfried, E. Knill, M. D. Barrett, R. B. Blakestad, W. M. Itano, J. D. Jost, C. Langer, R. Ozeri, T. Schaetz, and D. J. Wineland, “Implementation of the semiclassical quantum Fourier transform in a scalable system,” Science 308, 997–1000 (2005). [CrossRef]
  49. K. A. Brickman, P. C. Haljan, P. J. Lee, M. Acton, L. Deslauriers, C. Monroe, and , “Implementation of Grover’s quantum search algorithm in a scalable system,” Phys. Rev. A 72, 050306(R) (2005). [CrossRef]
  50. S. B. Zheng, “Splitting quantum information via W states,” Phys. Rev. A 74, 054303 (2006). [CrossRef]
  51. S. B. Zheng and G. C. Guo, “Efficient scheme for two-atom entanglement and quantum information processing in cavity QED,” Phys. Rev. Lett. 85, 2392–2395 (2000). [CrossRef]
  52. P. Agrawal and A. Pati, “Perfect teleportation and superdense coding with W states,” Phys. Rev. A 74, 062320 (2006). [CrossRef]
  53. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62, 062314 (2000). [CrossRef]
  54. H. Häffner, W. Hänsel, C. F. Roos, J. Benhelm, D. Chek-al-kar, M. Chwalla, T. Körber, U. D. Rapol, M. Riebe, P. O. Schmidt, C. Becher, O. Gühne, W. Dür, and R. Blatt, “Scalable multiparticle entanglement of trapped ions,” Nature 438, 643–646 (2005). [CrossRef]
  55. D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland, “Generation of nonclassical motional states of a trapped atom,” Phys. Rev. Lett. 76, 1796–1799 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited