OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2754–2764

Phase estimation by photon counting measurements in the output of a linear Mach–Zehnder interferometer

Yacob Ben-Aryeh  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2754-2764 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002754


View Full Text Article

Enhanced HTML    Acrobat PDF (238 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photon counting measurements are analyzed for obtaining a classical phase parameter in a linear Mach–Zehnder interferometer (MZI) by the use of phase estimation theories. The detailed analysis is made for four cases: (a) coherent states inserted into the interferometer, (b) Fock number state inserted in one input port of the interferometer and the vacuum into the other input port, (c) coherent state inserted into one input port of the interferometer and squeezed-vacuum state into the other input port, and (d) exchanging the first beam splitter of an MZI by a nonlinear system that inserts a NOON (representing a superposition of N particles in the first mode with zero particles in the second mode, and vice versa) state into the interferometer and by using photon counting for parity measurements. The properties of photon counting for obtaining minimal phase uncertainties for the above special cases and for the general case are discussed.

© 2012 Optical Society of America

OCIS Codes
(040.5570) Detectors : Quantum detectors
(350.5030) Other areas of optics : Phase
(350.5730) Other areas of optics : Resolution

ToC Category:
Quantum Optics

History
Original Manuscript: May 22, 2012
Revised Manuscript: July 31, 2012
Manuscript Accepted: August 13, 2012
Published: September 17, 2012

Citation
Yacob Ben-Aryeh, "Phase estimation by photon counting measurements in the output of a linear Mach–Zehnder interferometer," J. Opt. Soc. Am. B 29, 2754-2764 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2754


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. W. Helstrom, “Estimation of a displacement parameter of a quantum system,” Int. J. Theor. Phys. 11, 357–378 (1974). [CrossRef]
  2. C. W. Helstrom, Quantum Detection and Estimation Theory (Academic, 1976).
  3. S. L. Braunstein, C. M. Caves, and G. J. Milburn, “Generalized uncertainty relations: theory, examples, and Lorentz invariance,” Ann. Phys. 247, 135–173 (1996). [CrossRef]
  4. S. L. Braunstein and C. M. Caves, “Statistical distance and the geometry of quantum states,” Phys. Rev. Lett. 72, 3439–3443 (1994). [CrossRef]
  5. Z. Y. Ou, “Fundamental quantum limit in precision phase measurement,” Phys. Rev. A 55, 2598–2609 (1997). [CrossRef]
  6. J. J. Bollinger, W. M. Itano, D. J. Wineland, and D. J. Heinzen, “Optimal frequency measurements with maximally correlated states,” Phys. Rev. A 54, R4649–R4652 (1996). [CrossRef]
  7. J. Dunningham and T. Kim, “Using quantum interferometers to make measurements at the Heisenberg limit,” J. Mod. Opt. 53, 557–571 (2006). [CrossRef]
  8. G. Gilbert, M. Hamrick, and Y. S. Weinstein, “Use of maximally entangled N-photon states for practical quantum interferometry,” J. Opt. Soc. Am. B 25, 1336–1340 (2008). [CrossRef]
  9. B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wisman, and G. J. Pryde, “Entanglement-free Heisenberg-limited phase estimation,” Nature Lett. 450, 393–396 (2007). [CrossRef]
  10. H. Lee, P. Kok, and J. P. Dowling, “A quantum Rosetta Stone for interferometry,” J. Mod. Opt. 49, 2325–2338 (2002). [CrossRef]
  11. C. C. Gerry, A. Benmoussa, and R. A. Campos, “Parity measurements, Heisenberg-limited phase estimation, and beyond,” J. Mod. Opt. 54, 2177–2184 (2007). [CrossRef]
  12. M. W. Mitchell, J. S. Lundeen, and A. M. Steinberg, “Super-resolving phase measurements with a multiphoton entangled state,” Nature 429, 161–164 (2004). [CrossRef]
  13. G. Y. Xiang, B. L. Higgins, D. W. Berry, H. M. Wiseman, and G. J. Pryde, “Entanglement-enhanced measurement of a completely unknown optical phase,” Nat. Photonics 5, 43–47 (2011). [CrossRef]
  14. J. W. Noh, A. Fougeres, and L. Mandel, “Measurement of the quantum phase by photon counting,” Phys. Rev. Lett. 67, 1426–1429 (1991). [CrossRef]
  15. J. W. Noh, A. Fougeres, and L. Mandel, “Operational approach to the phase of a quantum field,” Phys. Rev. A 45, 424–442 (1992). [CrossRef]
  16. E. Waks, K. Inoue, W. D. Oliver, E. Diamanti, and Y. Yamamoto, “High-efficiency photon-number detection for quantum information processing,” IEEE J. Sel. Top. Quantum Electron. 9, 1502–1511 (2003). [CrossRef]
  17. C. F. Wildfeuer, A. J. Pearlman, J. Chen, J. Fan, A. Migdall, and J. P. Dowling, “Resolution and sensitivity of a Fabry–Perot interferometer with a photon-number-resolving detector,” Phys. Rev. A 80, 043822 (2009). [CrossRef]
  18. G. Khoury, H. S. Eisenberg, E. J. S. Fonseca, and D. Bouwmeester, “Nonlinear interferometry via Fock-state projection,” Phys. Rev. Lett. 96, 203601 (2006). [CrossRef]
  19. M. Rajteri, E. Taralli, C. Portesi, E. Monticone, and J. Beyer, “Photon-number discriminating superconducting transition-edge sensors,” Metrologia 46, S283–S287 (2009). [CrossRef]
  20. A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express 19, 9102–9110 (2011). [CrossRef]
  21. B. Cabrera, R. M. Clarke, P. Colling, A. J. Miller, S. Nam, and R. W. Romani, “Detection of single infrared, optical, and ultraviolet photons using superconducting transition edge sensors,” Appl. Phys. Lett. 73, 735–737 (1998). [CrossRef]
  22. C. C. Gerry, “Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime,” Phys. Rev. A 61, 043811(2000). [CrossRef]
  23. C. C. Gerry, A. Benmoussa, and R. A. Campos, “Quantum nondemolition measurement of parity and generation of parity eigenstates in optical fields,” Phys. Rev. A 72, 053818 (2005). [CrossRef]
  24. C. C. Gerry and T. Bui, “Quantum non-demolition measurement of photon number using weak nonlinearities,” Phys. Lett. A 372, 7101–7104 (2008). [CrossRef]
  25. R. A. Campos, C. C. Gerry, and A. Benmoussa, “Optical interferometry at the Heisenberg limit with twin Fock states and parity measurements,” Phys. Rev. A 68, 023810 (2003). [CrossRef]
  26. R. A. Campos and C. C. Gerry, “Permutation-parity exchange at a beam splitter: application to Heisenberg limited interferometry,” Phys. Rev. A 72, 065803 (2005). [CrossRef]
  27. R. A. Campos and C. C. Gerry, “Boson permutation and parity operators: Lie algebra and applications,” Phys. Lett. A 356, 286–289 (2006). [CrossRef]
  28. A. Chiruvelli and H. Lee, “Parity measurements in quantum optical metrology,” J. Mod. Opt. 58, 945–953 (2011). [CrossRef]
  29. C. C. Gerry and J. Mimih, “Heisenberg-limited interferometry with pair coherent states and parity measurements,” Phys. Rev. A 82, 013831 (2010). [CrossRef]
  30. P. M. Anisimov, G. M. Raterman, A. Chiruvelli, W. N. Plick, S. D. Huver, H. Lee, and J. P. Dowling, “Quantum metrology with two-mode squeezed vacuum: parity detection beats the Heisenberg limit,” Phys. Rev. Lett. 104, 103602 (2010). [CrossRef]
  31. C. C. Gerry and J. Mimih, “The parity operator in quantum optical metrology,” Contemp. Phys. 51, 497–511 (2010). [CrossRef]
  32. G. Haack, H. Forster, and M. Buttiker, “Parity detection and entanglement with a Mach–Zehnder interferometer,” Phys. Rev. B 82, 155303 (2010). [CrossRef]
  33. K. P. Seshadreesan, P. M. Anisimov, H. Lee, and J. P. Dowling, “Parity detection achieves the Heisenberg limit in interferometery with coherent mixed with a squeezed vacuum light,” New J. Phys. 13, 083026 (2011). [CrossRef]
  34. W. N. Plick, P. M. Anisimov, J. P. Dowling, H. Lee, and G. S. Agarwal, “Parity detection in quantum optics metrology without number-resolving detectors,” New J. Phys. 12, 113025 (2010). [CrossRef]
  35. C. C. Gerry, A. Benmoussa, and R. A. Campos, “Nonlinear interferometer as a resource of maximally entangled photonic states: application to interferometry,” Phys. Rev. A 66, 013804 (2002). [CrossRef]
  36. C. Brif and Y. Ben-Aryeh, “Improvement of measurement accuracy in SU(1,1) interferometers,” Quantum Semiclass. Opt. 8, 1–5 (1996). [CrossRef]
  37. A. Peres, Quantum Theory: Concepts and Methods (Kluwer, 1995).
  38. U. Dorner, R. Demkowicz-Dobrzanski, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Optimal quantum phase estimation,” Phys. Rev. Lett. 102, 040403 (2009). [CrossRef]
  39. Y. Ben-Aryeh, “Pancharatnam and Berry phases in three-level photonic systems,” J. Mod. Opt. 50, 2791–2805 (2003). [CrossRef]
  40. R. Demkowicz-Dobrzanski, U. Dorner, B. J. Smith, J. S. Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley, “Quantum phase estimation with lossy interferometers,” Phys. Rev. A 80, 013825 (2009). [CrossRef]
  41. P. Kok, H. Lee, and J. P. Dowling, “Creation of large photon-number pathentanglement conditioned on photodetection,” Phys. Rev. A 65, 052104 (2002). [CrossRef]
  42. C. M. Caves, “Quantum-mechanical noise in interferometer,” Phys. Rev. D 23, 1693–1708 (1981). [CrossRef]
  43. O. Assaf and Y. Ben-Aryeh, “Quantum mechanical noise in coherent-state and squeezed-state Michelson interferometers,” J. Opt. B 4, 49–56 (2002). [CrossRef]
  44. O. Assaf and Y. Ben-Aryeh, “Reduction of quantum noise in the Michelson interferometer by the use of squeezed vacuum states,” J. Opt. Soc. Am. B 19, 2716–2721 (2002). [CrossRef]
  45. R. Barak and Y. Ben-Aryeh, “Photon statistics and entanglement in coherent-squeezed linear Mach–Zehnder and Michelson interferometers,” J. Opt. Soc. Am. B 25, 361–372 (2008), includes list of references. [CrossRef]
  46. Y. Ben-Aryeh, “The use of balanced homodyne and squeezed states for detecting weak optical signals in a Michelson interferometer,” Phys. Lett. A 375, 1300–1303 (2011). [CrossRef]
  47. J. P. Dowling, “Quantum optical metrology—the lowdown on high-NOON states,” Contemp. Phys. 49, 125–143 (2008). [CrossRef]
  48. S. D. Huver, C. F. Wildfeur, and J. P. Dowling, “Entangled Fock states for robust quantum optical metrology, imaging, and sensing,” Phys. Rev. A 78, 063828 (2008). [CrossRef]
  49. I. Afek, O. Ambar, and Y. Silberberg, “High-NOON states by mixing quantum and classical light,” Science 328, 879–881 (2010). [CrossRef]
  50. M. A. Rubin and S. Kaushik, “Loss-induced limit to phase measurement precision with maximally entangled states,” Phys. Rev. A 75, 053805 (2007). [CrossRef]
  51. A. Rivas and A. Luis, “Precision quantum metrology and nonclassicality in linear and nonlinear detection schemes,” Phys. Rev. Lett. 105, 010403 (2010). [CrossRef]
  52. R. Barak and Y. Ben-Aryeh, “Non-orthogonal positive operator valued measure phase distributions of one- and two-mode electromagnetic fields,” J. Opt. B 7, 123–135 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited