OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2779–2786

Direct laser writing of relief diffraction gratings into a bulk chalcogenide glass

Tomas Kohoutek, Mark A. Hughes, Jiri Orava, Morio Mastumoto, Takashi Misumi, Hiroyasu Kawashima, Takenobu Suzuki, and Yasutake Ohishi  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2779-2786 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002779


View Full Text Article

Enhanced HTML    Acrobat PDF (1182 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We inscribed relief diffraction gratings with periods of 6, 14, and 24 μm into the surface of Ge15Ga3Sb12S70 bulk glass by the material’s ablation using a femtosecond λ=800nm Ti:sapphire pulsed laser. The laser writing was done with sample implemented on a computer-controlled stage employing surface-to-beam alignment, laser power, and raster pattern control. Pulse energies of 1.5, 3.0, and 4.5 μJ were focused on spot diameter of 1.5 μm, resulting in channel widths, measured on the surface, of around 4, 5, and 6 μm and depths up to 1.7 μm. The first-order diffraction efficiency of the fabricated gratings was up to 10% at λ=650nm. We have also fabricated a “composite” grating combining the three relief diffraction gratings inscribed in the same position, but with a mutual tilt. The composite grating provides complex multidirectional diffraction of the light in accordance with geometrical arrangement and grating period of all the gratings inscribed. We propose practical applications of femtosecond pulsed-laser surface patterning, for example, surface-relief diffraction microgratings integrated at the ends of multimode mid-IR chalcogenide optical waveguides or on the surfaces of bare core chalcogenide glass optical fibers used for chemical sensing.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.4330) Materials : Nonlinear optical materials
(350.3390) Other areas of optics : Laser materials processing

ToC Category:
Diffraction and Gratings

History
Original Manuscript: August 7, 2012
Manuscript Accepted: August 7, 2012
Published: September 18, 2012

Citation
Tomas Kohoutek, Mark A. Hughes, Jiri Orava, Morio Mastumoto, Takashi Misumi, Hiroyasu Kawashima, Takenobu Suzuki, and Yasutake Ohishi, "Direct laser writing of relief diffraction gratings into a bulk chalcogenide glass," J. Opt. Soc. Am. B 29, 2779-2786 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2779


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Waynant, I. K. Ilev, and I. Gannot, “Mid-infrared laser applications in medicine and biology,” Phil. Trans. R. Soc. A 359, 635–644 (2001). [CrossRef]
  2. F. K. Tittel, D. Richter, and A. Fried, in Solid-State Mid-Infrared Laser Sources (Topics in Applied Physics), I. T. Sorokina and K. L. Vodopyanov, eds. (Springer-Verlag, 2003), pp. 445–516.
  3. R. Muda, E. Lewis, S. O’Keeffe, G. Dooly, and J. Clifford, “Detection of high level carbon dioxide emissions using a compact optical fibre based mid-infrared sensor system for applications in environmental pollution monitoring,” J. Phys.: Conf. Ser. 178, 012008 (2009). [CrossRef]
  4. D. Ouzounov and F. Freund, “Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data,” Adv. Space Res. 33, 268–273 (2004). [CrossRef]
  5. L. Labadie and O. Wallner, “Mid-infrared guided optics: a perspective for astronomical instruments,” Opt. Express 17, 1947–1962 (2009). [CrossRef]
  6. Y. Utsugi and S. Zembutsu, “Relief type diffraction grating by amorphous chalcogenide films,” Appl. Phys. Lett. 27, 508–509 (1975). [CrossRef]
  7. S. H. Wong, M. Thiel, P. Brodersen, D. Fenske, G. A. Ozin, M. Wegener, and G. von Freymann, “Highly selective etch for high-resolution three-dimensional nanostructures in arsenic sulfide all-inorganic photoresist,” Chem. Mater. 19, 4213–4221 (2007). [CrossRef]
  8. R. M. Bryce, H. T. Nguyen, P. Nakeeran, R. G. DeCorby, P. K. Dwivedi, C. J. Haugen, J. N. McMullin, and S. O. Kasap, “Direct UV patterning of waveguide devices in As2Se3 thin films,” J. Vac Sci. Technol. A 22, 1044–1047 (2004). [CrossRef]
  9. J. M. Gonzalez-Leal, P. Krecmer, J. Prokop, and S. R. Elliott, “HOLOMETER: measurement apparatus for the evaluation of chalcogenide glasses as holographic recording media,” J. Non-Cryst. Solids 326, 416–424 (2003). [CrossRef]
  10. L. Su, C. J. Rowlands, and S. R. Elliott, “Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates,” Opt. Lett. 34, 1645–1647 (2009). [CrossRef]
  11. Z. G. Lian, W. Pan, D. Furniss, T. M. Benson, A. B. Seddon, T. Kohoutek, J. Orava, and T. Wagner, “Embossing of chalcogenide glasses: monomode rib optical waveguides in evaporated thin films,” Opt. Lett. 34, 1234–1236 (2009). [CrossRef]
  12. J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced Fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18, 26760–26768 (2010). [CrossRef]
  13. J. Orava, T. Kohoutek, A. L. Greer, and H. Fudouzi, “Soft imprint lithography of a bulk chalcogenide glass,” Opt. Mater. Express 1, 796–802 (2011). [CrossRef]
  14. E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50, 1974–1978 (2011). [CrossRef]
  15. K. Hirao and K. Miura, “Writing waveguides and gratings in silica and related materials by a femtosecond laser,” J. Non-Cryst. Solids 239, 91–95 (1998). [CrossRef]
  16. S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and G. von Freymann, “Direct laser writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses,” Adv. Mater. 18, 265–269 (2006). [CrossRef]
  17. A. Zoubir, M. Richardson, C. Rivero, A. Schulte, C. Lopez, K. Richardson, N. Ho, and R. Vallee, “Direct femtosecond laser writing of waveguides in As2S3 thin films,” Opt. Lett. 29, 748–750 (2004). [CrossRef]
  18. M. Hughes, W. Yang, and D. Hewak, “Fabrication and characterization of femtosecond laser written waveguides in chalcogenide glass,” Appl. Phys. Lett. 90, 131113 (2007). [CrossRef]
  19. A. Ródenas, G. Martin, B. Arezki, N. Psaila, G. Jose, A. Jha, L. Labadie, P. Kern, A. Kar, and R. Thomson, “Three-dimensional mid-infrared photonic circuits in chalcogenide glass,” Opt. Lett. 37, 392–394 (2012). [CrossRef]
  20. X. Liu, D. Du, and G. Mourou, “Laser ablation and micromachining with ultrashort laser pulses,” IEEE J. Quantum Electron. 33, 1706–1716 (1997). [CrossRef]
  21. F. Korte, S. Adams, A. Egbert, C. Fallnich, A. Ostendorf, S. Nolte, M. Will, J.-P. Ruske, B. Chichkov, and A. Tuennermann, “Sub-diffraction limited structuring of solid targets with femtosecond laser pulses,” Opt. Express 7, 41–49 (2000). [CrossRef]
  22. S. Nolte, B. N. Chichkov, H. Welling, Y. Shani, K. Lieberman, and H. Terkel, “Nanostructuring with spatially localized femtosecond laser pulses,” Opt. Lett. 24, 914–916 (1999). [CrossRef]
  23. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun. 114, 106–110 (1995). [CrossRef]
  24. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995). [CrossRef]
  25. S. M. Eaton, H. Zhang, P. R. Herman, F. Yoshino, L. Shah, J. Bovatsek, and A. Y. Arai, “Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate,” Opt. Express 13, 4708–4716 (2005). [CrossRef]
  26. L. Brilland, F. Smektala, G. Renversez, T. Chartier, J. Troles, T. Nguyen, N. Traynor, and A. Monteville, “Fabrication of complex structures of holey fibers in chalcogenide glass,” Opt. Express 14, 1280–1285 (2006). [CrossRef]
  27. T. Kohoutek, X. Yan, T. W. Shiosaka, A. Chrissanthopoulos, S. N. Yannopoulos, T. Suzuki, and Y. Ohishi, “Enhanced Raman gain of Ge-Ga-Sb-S chalcogenide glass for highly nonlinear microstructured optical fibers,” J. Opt. Am. Soc. B 28, 2284–2290 (2011). [CrossRef]
  28. V. Moizan, V. Nazabal, J. Troles, P. Houizot, J.-L. Adam, J.-L. Doualan, R. Moncorge, F. Smektala, G. Gadret, S. Pitois, and G. Canat, “Er3+-doped GeGaSbS glasses for mid-IR fibre laser application: synthesis and rare earth spectroscopy,” Opt. Mater. (Amsterdam) 31, 39–46 (2008). [CrossRef]
  29. I. Horcas, R. Fernandez, J. M. Gomez-Rodriguez, J. Colchero, J. Gomez-Herrero, and A. M. Baro, “WSXM: a software for scanning probe microscopy and a tool for nanotechnology,” Rev. Sci. Instrum. 78, 013705 (2007). [CrossRef]
  30. http://www.elionix.co.jp .
  31. R. Eason, Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials (Wiley, 2007).
  32. E. G. Gamaly, A. V. Rode, B. Luther-Davies, and V. T. Tikhonchuk, “Electrostatic mechanism of ablation by femtosecond lasers,” Phys. Plasmas 9, 949–957 (2002). [CrossRef]
  33. E. G. Gamaly, A. V. Rode, and B. L. Davies, “Ultrafast laser ablation and film deposition,” in Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials, R. Eason, ed. (Wiley, 2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited