OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2787–2796

Numerical analysis of soliton propagation in photonic crystal slab waveguides for signal processing applications

Panagiotis Kanakis, Thomas Kamalakis, and Thomas Sphicopoulos  »View Author Affiliations

JOSA B, Vol. 29, Issue 10, pp. 2787-2796 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (724 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The delay performance of slow light optical pulses inside photonic crystal slab waveguides is considered in the linear and nonlinear propagation regime from both a theoretical and an application point of view. The numerical model used relies on a nonlinear envelope propagation equation that includes the effects of second- and third-order dispersion, optical losses, and self-phase modulation. It is numerically shown that for rates of 40 Gb / s and 100 Gb / s , nonlinear solitary pulses experience less broadening than the linear case and can therefore be used to obtain larger delays. The influence of propagation losses on the soliton broadening factor is also incorporated and discussed. The results demonstrate the potential of implementing a variety of linear and nonlinear signal processing applications in photonic crystal waveguides including optical buffering.

© 2012 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(230.7370) Optical devices : Waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

Original Manuscript: May 8, 2012
Revised Manuscript: July 27, 2012
Manuscript Accepted: August 15, 2012
Published: September 19, 2012

Panagiotis Kanakis, Thomas Kamalakis, and Thomas Sphicopoulos, "Numerical analysis of soliton propagation in photonic crystal slab waveguides for signal processing applications," J. Opt. Soc. Am. B 29, 2787-2796 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Lui, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low power, all-optical flip-flop memory on silicon chip,” Nat. Photonics 4, 182–187 (2010). [CrossRef]
  2. K. Kitayama, T. Kubo, R. Takahashi, S. Matsuo, S. Arakawa, M. Murata, M. Notomi, K. Nozaki, and K. Kato, “All-optical RAM buffer subsystem demonstrator,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2011), paper OMK.
  3. B. Corcoran, C. Monat, M. Pelusi, C. Grillet, T. P. White, L. O’Faolain, T. F. Krauss, B. J. Eggleton, and D. J. Moss, “Optical signal processing on a silicon chip at 640  Gb/s using slow-light,” Opt. Express 18, 7770–7781 (2010). [CrossRef]
  4. W. D. Zhong and R. S. Tucker, “A new wavelength routed photonic packet buffer combining travelling delay lines with delay-line loops,” J. Lightwave Technol. 19, 1085–1092 (2001). [CrossRef]
  5. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals, Molding the Flow of Light, 2nd ed.(Princeton University, 2008).
  6. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000). [CrossRef]
  7. R. E. Collin, Field Theory of Guided Waves, 2nd ed. (IEEE, 1990).
  8. A. Yu. Petrov and M. Eich, “Zero dispersion at small group velocities in photonic crystal waveguides,” Appl. Phys. Lett. 85, 4866–4868 (2004). [CrossRef]
  9. I. H. Rey, D. M. Beggs, T. Kampfrath, L. Kuipers, and T. F. Krauss, “Ultrafast tunable optical delay in slow light photonic crystal waveguides,” Group IV Photonics (GFP), 8th IEEE International Conference (2011).
  10. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007). [CrossRef]
  11. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. J. Eggleton, T. P. White, L. O’Faolain, and T. F. Krauss, “Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides,” Opt. Express 17, 2944–2953 (2009). [CrossRef]
  12. L. C. Andreani and D. Gerace, “Light-matter interaction in photonic crystal slabs,” Phys. Status Solidi B 244, 3528–3539 (2007). [CrossRef]
  13. B. Wang, S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Backscattering in monomode periodic waveguides,” Phys. Rev. B 78, 245108 (2008). [CrossRef]
  14. R. J. P. Engelen, Y. Sugimoto, Y. Watanabe, J. P. Korterik, N. Ikeda, N. F. van Hulst, K. Asakawa, and L. Kuipers, “The effect of higher-order dispersion on slow light propagation in photonic crystal waveguides,” Opt. Express 14, 1658–1672 (2006). [CrossRef]
  15. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94, 033903 (2005). [CrossRef]
  16. A. Theocharidis, T. Kamalakis, A. Chipouras, and T. Sphicopoulos, “Linear and nonlinear optical pulse propagation in photonic crystal waveguides near the band edge,” IEEE J. Quantum Electron. 44, 1020–1027 (2008). [CrossRef]
  17. I. Neokosmidis, T. Kamalakis, and T. Sphicopoulos, “Optical delay lines based on soliton propagation in photonic crystal coupled resonator optical waveguides,” IEEE J. Quantum Electron. 43, 560–567 (2007). [CrossRef]
  18. L. O’Faolain, S. A. Schulz, D. M. Beggs, T. P. White, M. Spasenovic, L. Kuipers, F. Morichetti, A. Melloni, S. Mazoyer, J. P. Hugonin, P. Lalanne, and T. F. Krauss, “Loss engineered slow light waveguides,” Opt. Express 18, 27627–27638 (2010). [CrossRef]
  19. G. P. Agrawal, Non-Linear Fiber Optics (Academic, 2001).
  20. J. H. B. Nijhof, W. Forysiak, and N. J. Doran, “The averaging method for finding exactly periodic dispersion-managed solitons,” IEEE J. Sel. Top. Quantum Electron. 6, 330–336 (2000). [CrossRef]
  21. J. Bethge, C. Bree, S. Amiranashvili, F. Noack, G. Steinmeyer, and A. Demircan, “All-optical transistor using an optical event horizon,” in CLEO/Europe and EQEC 2011 Conference DigestOSA Technical Digest (CD) (Optical Society of America, 2011), paper CF4_1.
  22. P. Colman, C. Husko, S. Combrie, I. Sagnes, C. W. Wong, and A. De Rossi, “Temporal solitons and pulse compression in photonic crystal waveguides,” Nat. Photonics 4, 862–868 (2010). [CrossRef]
  23. H. Zhang, D. Y. Tang, L. M. Zhao, and X. Wu, “Dark pulse emission of fiber laser,” Phys. Rev. A 80, 045803 (2009). [CrossRef]
  24. M. Feng, K. L. Silverman, R. P. Mirin, and S. T. Cundiff, “Dark pulse quantum dot diode laser,” Opt. Express 18, 13385–13395(2010). [CrossRef]
  25. S. F. Hanim, J. Ali, and P. P. Yupapin, “Dark soliton generation using dual brillouin fiber laser in a fiber optic ring resonator,” Microw. Opt. Technol. Lett. 52, 881–883 (2010). [CrossRef]
  26. T. Kamalakis and T. Sphicopoulos, “A new formulation of coupled propagation equations in periodic nanophotonic waveguides for the treatment of Kerr-induced nonlinearities,” IEEE J. Quantum Electron. 43, 923–933 (2007). [CrossRef]
  27. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef]
  28. A. Petrov and M. Eich, “Dispersion compensation with photonic crystal line-defect waveguides,” IEEE J. Select. Areas Commun. Nanotech. Commun. 23, 1396–1401 (2005). [CrossRef]
  29. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72, 161318 (2005). [CrossRef]
  30. S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009). [CrossRef]
  31. D. Gerace and L. C. Andreani, “Effects of disorder on propagation losses and cavity Q-factors in photonic crystal slabs,” Photon. Nanostr. Fundam. Appl. 3, 120–128 (2005). [CrossRef]
  32. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Prespective (Morgan Kaufman, 1998).
  33. N. Panoiu, M. Bahl, and R. Osgood, “All-optical tunability of a nonlinear photonic crystal channel drop filter,” Opt. Express 12, 1605–1610 (2004). [CrossRef]
  34. M. Shinkawa, N. Ishikura, Y. Hama, K. Suzuki, and T. Baba, “Nonlinear enhancement in photonic crystal slow light waveguides fabricated using CMOS-compatible process,” Opt. Express 19, 22208–22218 (2011). [CrossRef]
  35. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15, 17458 (2007). [CrossRef]
  36. M. Patterson, S. Hughes, S. Schulz, D. M. Beggs, T. P. White, L. O’Faolain, and T. F. Krauss, “Disorder-induced incoherent scattering losses in photonic crystal waveguides: Bloch mode reshaping, multiple scattering, and breakdown of the Beer-Lambert law,” Phys. Rev. B 80, 195305 (2009). [CrossRef]
  37. S. Mazoyer, P. Lalanne, J. C. Rodier, J. P. Hugonin, M. Spasenovic, L. Kuipers, D. M. Beggs, and T. F. Krauss, “Statistical fluctuations of transmission in slow light photonic-crystal waveguides,” Opt. Express 18, 14654–14663 (2010). [CrossRef]
  38. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observations of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99, 253901 (2007). [CrossRef]
  39. C. Caer, X. Le Roux, D. Marris-Morrini, L. Vivien, and E. Cassan, “Slow light in slot photonic crystal waveguides by dispersion engineering,” Proc. SPIE 8425, 842504 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited