OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2803–2813

Modulational instability at the proximity of zero dispersion wavelength in the relaxing saturable nonlinear system

K. Porsezian, K. Nithyanandan, R. Vasantha Jayakantha Raja, and P. K. Shukla  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2803-2813 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002803


View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the modulational instability (MI) of an optical beam near the zero group dispersion wavelength of a relaxing saturable nonlinear system. Considering a suitable theoretical model, we identify and discuss significant features of higher order dispersion (HOD), especially the role of the fourth-order dispersion (FOD) in the MI spectrum of relaxing saturable systems. The influence of FOD is to suppress MI in the anomalous group dispersion regime, to promote MI sidebands in the normal group dispersion regime, and the evolution of nonconventional sidebands are observed. Particularly, the inclusion of a finite value of the response time extends the range of unstable frequencies down to infinite frequencies. This happens because the finite response time in the nonlinear response is equivalent to assuming a complex nonlinearity. Therefore, in addition to the real part of the nonlinearity (which governs the parametric MI process), the contribution from the imaginary part of the nonlinear response (which models the Raman process) extends the domain of MI through the self-phase-matched process, even when the phase matching for the parametric MI process is not feasible. In the regime of the slow response, MI is suppressed regardless of the signs of the dispersion coefficients. To give a better insight into the MI phenomena, the maximum instability gain and the optimum modulation frequency are drawn as a function of the delay time. Thus, in this paper, the MI dynamics of a relaxing saturable nonlinear system is emphasized and the influence of HOD is highlighted.

© 2012 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 7, 2012
Manuscript Accepted: August 11, 2012
Published: September 19, 2012

Citation
K. Porsezian, K. Nithyanandan, R. Vasantha Jayakantha Raja, and P. K. Shukla, "Modulational instability at the proximity of zero dispersion wavelength in the relaxing saturable nonlinear system," J. Opt. Soc. Am. B 29, 2803-2813 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2803


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  2. A. Hasegawa, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Opt. Lett. 9, 288–290 (1984). [CrossRef]
  3. K. Tai, A. Hasegawa, and A. Tomita, “Observation of modulational instability in optical fibers,” Phys. Rev. Lett. 56, 135–138(1986). [CrossRef]
  4. A. Hasegawa and F. Tappert, “Generation of a train of soliton pulses by induced modulational instability in optical fibers,” Appl. Phys. Lett. 23, 142–244 (1973). [CrossRef]
  5. M. J. Potasek, “Modulation instability in an extended nonlinear Schrödinger equation,” Opt. Lett. 12, 921–923 (1987). [CrossRef]
  6. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  7. R. V. J. Raja, K. Porsezian, and K. Nithyanandan, “Modulational-instability-induced supercontinuum generation with saturable nonlinear response,” Phys. Rev. A 82, 013825 (2010). [CrossRef]
  8. K. Hammani, B. Wetzel, B. Kibler, J. Fatome, C. Finot, G. Millot, N. Akhmediev, and J. M. Dudley, “Spectral dynamics of modulation instability described using Akhmediev breather theory,” Opt. Lett. 36, 2140–2142 (2011). [CrossRef]
  9. M. N. Z. Abouou, P. T. Dinda, C. M. Ngabireng, B. Kibler, and F. Smektala, “Impact of the material absorption on the modulational instability spectra of wave propagation in high-index glass fibers,” J. Opt. Soc. Am. B 28, 1518–1528 (2011). [CrossRef]
  10. A. Kumar, A. Labruyere, and P. T. Dinda, “Modulational instability in fiber systems with periodic loss compensation and dispersion management,” Opt. Commun. 219, 221–232 (2003). [CrossRef]
  11. T. Sylvestre, S. Coen, P. Emplit, and M. Haelterman, “Self-induced modulational instability laser revisited: normal dispersion and dark-pulse train generation,” Opt. Lett. 27, 482–484 (2002). [CrossRef]
  12. S. Coen and M. Haelterman, “Continuous-wave ultrahigh-repetition-rate pulse-train generation through modulational instability in a passive fiber cavity,” Opt. Lett. 26, 39–41 (2001). [CrossRef]
  13. S. Trillo, S. Wabnitz, G. I. Stegeman, and E. M. Wright, “Parametric amplification and modulational instabilities in dispersive nonlinear directional couplers with relaxing nonlinearity,” J. Opt. Soc. Am. B 6, 889–900 (1989). [CrossRef]
  14. X. Liu, J. W. Haus, and S. Shahriar, “Modulation instability for a relaxational Kerr medium,” Opt. Commun. 281, 2907–2912 (2008). [CrossRef]
  15. W.-H. Chu, C.-C. Jeng, C.-H. Chen, Y.-H. Liu, and M.-F. Shih, “Induced spatiotemporal modulation instability in a noninstantaneous self-defocusing medium,” Opt. Lett. 30, 1846–1848 (2005). [CrossRef]
  16. L. Zhang, S. Wen, X. Fu, J. Deng, J. Zhang, and D. Fan, “Spatiotemporal instability in dispersive nonlinear Kerr medium with a finite response time,” Opt. Commun. 283, 2251–2257 (2010). [CrossRef]
  17. C. Cambournac, H. Maillotte, E. Lantz, J. M. Dudley, and M. Chauvet, “Spatiotemporal behavior of periodic arrays of spatial solitons in a planar waveguide with relaxing Kerr nonlinearity,” J. Opt. Soc. Am. B 19, 574–585 (2002). [CrossRef]
  18. M.-F. Shih, C. C. Jeng, F. W. Sheu, and C. Y. Lin, “Spatiotemporal optical modulation instability of coherent light in noninstantaneous nonlinear media,” Phys. Rev. Lett. 88, 133902 (2002). [CrossRef]
  19. H. Leblond and C. Cambournac, “Spatial modulation instability of coherent light in a weakly-relaxing Kerr medium,” J. Opt. A 6, 461–468 (2004). [CrossRef]
  20. I. Velchev, R. Pattnaik, and J. Toulouse, “Two-beam modulation instability in noninstantaneous nonlinear media,” Phys. Rev. Lett. 91, 093905 (2003). [CrossRef]
  21. S. Yao, C. Karaguleff, A. Gabel, R. Fortenberry, C. T. Seaton, and G. I. Stegeman, “Ultrafast carrier and grating lifetimes in semiconductor-doped glasses,” Appl. Phys. Lett. 46, 801–802 (1985). [CrossRef]
  22. G. R. Olbright and N. Peyghambarian, “Interferometric measurement of the nonlinear index of refraction, n2, of CdSxSe1−x-doped glasses,” Appl. Phys. Lett. 48, 1184–1186 (1986). [CrossRef]
  23. R. Hellwarth, “Third-order optical susceptibilities of liquids and solids,” Progr. Quantum Electron. 5, 1–68 (1979). [CrossRef]
  24. D. McMorrow, W. T. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24, 443–454 (1988). [CrossRef]
  25. R. V. J. Raja, A. Husakou, J. Hermann, and K. Porsezian, “Supercontinuum generation in liquid-filled photonic crystal fiber with slow nonlinear response,” J. Opt. Soc. Am. B 27, 1763–1768 (2010). [CrossRef]
  26. S. Gatz and J. Herrmann, “Soliton propagation in materials with saturable nonlinearity,” J. Opt. Soc. Am. B 8, 2296–2302 (1991). [CrossRef]
  27. Y.-F. Chen, K. Beckwitt, F. W. Wise, B. G. Aitken, J. S. Sanghera, and I. D. Aggarwal, “Measurement of fifth- and seventh-order non-linearities of glasses,” J. Opt. Soc. Am. B 23, 347–352 (2006). [CrossRef]
  28. J. M. Hickmann, S. B. Cavalcanti, N. M. Borges, E. A. Gouveia, and A. S. Gouveia-Neto, “Modulational instability in semiconductor-doped glass fibers with saturable nonlinearity,” Opt. Lett. 18, 182–184 (1993). [CrossRef]
  29. J. Herrmann, “Propagation of ultrashort light pulses in fibers with saturable nonlinearity in the normal-dispersion region,” J. Opt. Soc. Am. B 8, 1507–1511 (1991). [CrossRef]
  30. P. Roussignol, D. Ricard, J. Lukasik, and C. Flytzanis, “New results on optical phase conjugation in semiconductor-doped glasses,” J. Opt. Soc. Am. B 4, 5–13 (1987). [CrossRef]
  31. J.-L. Coutaz and M. Kull, “Saturation of the nonlinear index of refraction in semiconductor-doped glass,” J. Opt. Soc. Am. B 8, 95–98 (1991). [CrossRef]
  32. G. L. da Silva, I. Gleria, M. L. Lyra, and A. S. B. Sombra, “Modulational instability in lossless fibers with saturable delayed nonlinear response,” J. Opt. Soc. Am. B 26, 183–188 (2009). [CrossRef]
  33. W. Shuang-Chun, S. Wen-Hua, Z. Hua, F. Xi-Quan, Q. Lie-Jia, and F. Dian-Yuan, “Influence of higher-order dispersions and Raman delayed response on modulation instability in microstructured fibres,” Chin. Phys. Lett. 20, 852–854 (2003). [CrossRef]
  34. F. K. Abdullaev, S. A. Darmanyan, S. Bischoff, P. L. Christiansen, and M. P. Sorensen, “Modulational instability in optical fibers near the zero dispersion point,” Opt. Commun. 108, 60–64 (1994). [CrossRef]
  35. S. B. Cavalcanti, J. C. Cressoni, H. R. da Cruz, and A. S. Gouveia-Neto, “Modulation instability in the region of minimum group-velocity dispersion of single-mode optical fibers via an extended nonlinear Schrödinger equation,” Phys. Rev. A 43, 6162–6165 (1991). [CrossRef]
  36. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett. 28, 2225–2227 (2003). [CrossRef]
  37. S. Pitois and G. Millot, “Experimental observation of a new modulational instability spectral window induced by fourth-order dispersion in a normally dispersive single-mode optical fiber,” Opt. Commun. 226, 415–422 (2003). [CrossRef]
  38. P. T. Dinda, C. Ngabireng, K. Porsezian, and B. Kalithasan, “Modulational instability in optical fibers with arbitrary higher-order dispersion and delayed Raman response,” Opt. Commun. 266, 142–150 (2006). [CrossRef]
  39. P. T. Dinda and K. Porsezian, “Impact of fourth-order dispersion in the modulational instability spectra of wave propagation in glass fibers with saturable nonlinearity,” J. Opt. Soc. Am. B 27, 1143–1152 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited