OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2803–2813

Modulational instability at the proximity of zero dispersion wavelength in the relaxing saturable nonlinear system

K. Porsezian, K. Nithyanandan, R. Vasantha Jayakantha Raja, and P. K. Shukla  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2803-2813 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002803


View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate the modulational instability (MI) of an optical beam near the zero group dispersion wavelength of a relaxing saturable nonlinear system. Considering a suitable theoretical model, we identify and discuss significant features of higher order dispersion (HOD), especially the role of the fourth-order dispersion (FOD) in the MI spectrum of relaxing saturable systems. The influence of FOD is to suppress MI in the anomalous group dispersion regime, to promote MI sidebands in the normal group dispersion regime, and the evolution of nonconventional sidebands are observed. Particularly, the inclusion of a finite value of the response time extends the range of unstable frequencies down to infinite frequencies. This happens because the finite response time in the nonlinear response is equivalent to assuming a complex nonlinearity. Therefore, in addition to the real part of the nonlinearity (which governs the parametric MI process), the contribution from the imaginary part of the nonlinear response (which models the Raman process) extends the domain of MI through the self-phase-matched process, even when the phase matching for the parametric MI process is not feasible. In the regime of the slow response, MI is suppressed regardless of the signs of the dispersion coefficients. To give a better insight into the MI phenomena, the maximum instability gain and the optimum modulation frequency are drawn as a function of the delay time. Thus, in this paper, the MI dynamics of a relaxing saturable nonlinear system is emphasized and the influence of HOD is highlighted.

© 2012 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes

ToC Category:
Nonlinear Optics

History
Original Manuscript: June 7, 2012
Manuscript Accepted: August 11, 2012
Published: September 19, 2012

Citation
K. Porsezian, K. Nithyanandan, R. Vasantha Jayakantha Raja, and P. K. Shukla, "Modulational instability at the proximity of zero dispersion wavelength in the relaxing saturable nonlinear system," J. Opt. Soc. Am. B 29, 2803-2813 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2803

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited