OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2819–2826

Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime

Dong Mao and Hua Lu  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2819-2826 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002819


View Full Text Article

Enhanced HTML    Acrobat PDF (4949 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The formation and evolution of dual-wavelength solitons in passively mode-locked fiber soliton lasers are investigated both numerically and experimentally. By solving the Ginzburg–Landau equation and taking the gain profile into account, mode-locked soliton emissions at 1532 and 1555 nm are achieved simultaneously. Numerical results show that the two solitons exhibit the same intensity and duration, indicating that the dual-wavelength pulses possess the soliton energy quantization effect. In the process of pulse–pulse collisions, two solitons pass through each other and maintain their properties, qualitatively distinct from single-wavelength solitons that never overlap each other. The dual-wavelength mode-locked operation evolves into single-wavelength mode locking with the decrease of the pumping strength. The dual-peak gain spectrum of erbium-doped fiber and the birefringence-induced cavity filtering effect play crucial roles in the formation of dual-wavelength solitons. Numerical results agree well with analytical solutions and experimental observations. Our study provides an optional method of measuring the fiber dispersion by means of the dual-wavelength solitons.

© 2012 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: June 7, 2012
Revised Manuscript: August 12, 2012
Manuscript Accepted: August 21, 2012
Published: September 19, 2012

Citation
Dong Mao and Hua Lu, "Formation and evolution of passively mode-locked fiber soliton lasers operating in a dual-wavelength regime," J. Opt. Soc. Am. B 29, 2819-2826 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2819


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotech. 3, 738–742 (2008). [CrossRef]
  2. L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal-dispersion fiber lasers,” Laser Phys. Lett. 7, 63–67 (2010). [CrossRef]
  3. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17, 20707–20713 (2009). [CrossRef]
  4. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012). [CrossRef]
  5. X. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express 17, 9549–9557 (2009). [CrossRef]
  6. R. Gumenyuk and O. G. Okhotnikov, “Temporal control of vector soliton bunching by slow/fast saturable absorption,” J. Opt. Soc. Am. B 29, 1–7 (2012). [CrossRef]
  7. H. A. Haus and W. S. William, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423–444 (1996). [CrossRef]
  8. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  9. X. M. Liu, “Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system,” Phys. Rev. A 81, 053819 (2010). [CrossRef]
  10. G. P. Agrawal, “Nonlinear fiber optics: its history and recent progress,” J. Opt. Soc. Am. B 28, A1–A10 (2011). [CrossRef]
  11. S. R. Friberg and K. W. DeLong, “Breakup of bound higher-order solitons,” Opt. Lett. 17, 979–981 (1992). [CrossRef]
  12. X. M. Liu, X. Yang, F. Lu, J. Ng, X. Zhou, and C. Lu, “Stable and uniform dual-wavelength erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber,” Opt. Express 13, 142–147 (2005). [CrossRef]
  13. H. B. Sun, X. Liu, Y. K. Gong, X. H. Li, and L. R. Wang, “Broadly tunable dual-wavelength erbium-doped fiber ring laser based on a high birefringence fiber loop mirror,” Laser Phys. 20, 522–527 (2010). [CrossRef]
  14. X. Liu and C. Lu, “Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers,” IEEE Photon. Technol. Lett. 17, 2541–2543 (2005). [CrossRef]
  15. X. Liu, Y. Chung, A. Lin, W. Zhao, K. Q. Lu, Y. S. Wang, and T. Y. Zhang, “Tunable and switchable multi-wavelength erbium-doped fiber laser with highly nonlinear photonic crystal fiber and polarization controllers,” Laser Phys. Lett. 5, 904–907 (2008). [CrossRef]
  16. X. H. Li, X. M. Liu, Y. Gong, H. Sun, L. Wang, and K. Lu, “A novel erbium/ytterbium co-doped distributed feedback fiber laser with single-polarization and unidirectional output,” Laser Phys. Lett. 7, 55–59 (2010). [CrossRef]
  17. X. Liu, X. Zhou, X. Tang, J. Ng, J. Hao, T. Y. Chai, E. Leong, and C. Lu, “Switchable and tunable multiwavelength erbium-doped fiber laser with fiber Bragg gratings and photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 1626–1628 (2005). [CrossRef]
  18. X. M. Liu, “A novel dual-wavelength DFB fiber laser based on symmetrical FBG structure,” IEEE Photon. Technol. Lett. 19, 632–634 (2007). [CrossRef]
  19. X. Liu, T. Wang, C. Shu, L. R. Wang, A. Lin, K. Q. Lu, T. Y. Zhang, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18, 1357–1361 (2008). [CrossRef]
  20. A. Haboucha, H. Leblond, M. Salhi, A. Komarov, and F. Sanchez, “Analysis of soliton pattern formation in passively mode-locked fiber lasers,” Phys. Rev. A 78, 043806 (2008). [CrossRef]
  21. N. N. Akhmediev, A. Ankiewicz, and J. M. Soto-Crespo, “Multisoliton solutions of the complex Ginzburg-Landau equation,” Phys. Rev. Lett. 79, 4047–4051 (1997). [CrossRef]
  22. L. Yun and X. Liu, “Generation and propagation of bound-state pulses in a passively mode-locked figure-eight laser,” IEEE Photon. J. 4, 512–519 (2012). [CrossRef]
  23. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997). [CrossRef]
  24. L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, and N. Xiang, “Soliton trapping in fiber lasers,” Opt. Express 16, 9528–9533 (2008). [CrossRef]
  25. Z. Sun, T. Hasan, F. Wang, A. G. Rozhin, I. H. White, and A. C. Ferrari, “Ultrafast stretched-pulse fiber laser mode-locked by carbon nanotubes,” Nano Res. 3, 404–411 (2010). [CrossRef]
  26. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92, 213902 (2004). [CrossRef]
  27. X. M. Liu, “Dynamic evolution of temporal dissipative-soliton molecules in large normal path-averaged dispersion fiber lasers,” Phys. Rev. A 82, 063834 (2010). [CrossRef]
  28. W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010). [CrossRef]
  29. X. Liu, “Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity,” Opt. Express 17, 22401–22416 (2009). [CrossRef]
  30. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81, 023811 (2010). [CrossRef]
  31. D. S. Kharenko, O. V. Shtyrina, I. A. Yarutkina, E. V. Podivilov, M. P. Fedoruk, and S. A. Babin, “Highly chirped dissipative solitons as a one-parameter family of stable solutions of the cubic–quintic Ginzburg–Landau equation,” J. Opt. Soc. Am. B 28, 2314–2319 (2011). [CrossRef]
  32. X. M. Liu, “Soliton formation and evolution in passively-mode-locked lasers with ultralong anomalous-dispersion fibers,” Phys. Rev. A 84, 023835 (2011). [CrossRef]
  33. X. M. Liu, “Interaction and motion of solitons in passively-mode-locked fiber lasers,” Phys. Rev. A 84, 053828 (2011). [CrossRef]
  34. X. H. Li, X. M. Liu, X. H. Hu, L. R. Wang, H. Lu, Y. S. Wang, and W. Zhao, “Long-cavity passively mode-locked fiber ring laser with high-energy rectangular-shape pulses in anomalous dispersion regime,” Opt. Lett. 35, 3249–3251 (2010). [CrossRef]
  35. X. M. Liu, “Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion,” Opt. Express 19, 5874–5887 (2011). [CrossRef]
  36. D. Pudo, L. R. Chen, D. Giannone, L. Zhang, and I. Bennion, “Actively mode-locked tunable dual-wavelength erbium-doped fiber laser,” IEEE Photon. Technol. Lett. 14, 143–145 (2002). [CrossRef]
  37. G. E. Town, L. Chen, and P. W. E. Smith, “Dual wavelength mode-locked fiber laser,” IEEE Photon. Technol. Lett. 12, 1459–1461 (2000). [CrossRef]
  38. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Panye, “Selfstarting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation,” Electron. Lett. 28, 1391–1393 (1992). [CrossRef]
  39. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17, 12692–12697 (2009). [CrossRef]
  40. G. Q. Xie, D. Y. Tang, H. Luo, H. J. Zhang, H. H. Yu, J. Y. Wang, X. T. Tao, M. H. Jiang, and L. J. Qian, “Dual-wavelength synchronously mode-locked Nd:CNGG laser,” Opt. Lett. 33, 1872–1874 (2008). [CrossRef]
  41. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72, 043816(2005). [CrossRef]
  42. X. Liu and B. Lee, “A fast method for nonlinear Schrödinger equation,” IEEE Photon. Technol. Lett. 15, 1549–1551 (2003). [CrossRef]
  43. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095–10100 (2006). [CrossRef]
  44. X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A 82, 053808 (2010). [CrossRef]
  45. V. Roy, M. Olivier, F. Babin, and M. Piche, “Dynamics of periodic pulse collisions in a strongly dissipative-dispersive system,” Phys. Rev. Lett. 94, 203903 (2005). [CrossRef]
  46. H. Xu, D. Lei, S. Wen, X. Fu, J. Zhang, Y. Shao, L. Zhang, H. Zhang, and D. Fan, “Observation of central wavelength dynamics in erbium-doped fiber ring laser,” Opt. Express 16, 7169–7174 (2008). [CrossRef]
  47. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17, 404–407 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited