OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2827–2833

Atomic quantum information processing in low-Q cavity in the intermediate coupling region

Shi-Lei Su, Qi Guo, Long Zhu, Hong-Fu Wang, and Shou Zhang  »View Author Affiliations

JOSA B, Vol. 29, Issue 10, pp. 2827-2833 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (591 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an atomic-state entangler with single atoms trapped in separated low-Q cavities, a coherent optical pulse as a quantum channel, a photon detector that only distinguishes the vacuum and nonvacuum states, and basic optical elements based on the input–output process in the intermediate coupling region with a higher probability and fidelity. The atomic-state entangler is meaningful because it does not need a strong coupling cavity and a single-photon source and could be feasible for large-scale quantum computation and quantum communication in the future. Based on this entangler, quantum information nonlocal transfer without classical communication, the quantum controlled-NOT gate, the four-particle |χ state, the N-particle Greenberger-Horne-Zeilinger (GHZ) state, and cluster-state generation can be realized completely, which is useful in large-scale and nonlocal quantum information processing.

© 2012 Optical Society of America

OCIS Codes
(270.5580) Quantum optics : Quantum electrodynamics
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: July 3, 2012
Revised Manuscript: August 13, 2012
Manuscript Accepted: August 21, 2012
Published: September 19, 2012

Shi-Lei Su, Qi Guo, Long Zhu, Hong-Fu Wang, and Shou Zhang, "Atomic quantum information processing in low-Q cavity in the intermediate coupling region," J. Opt. Soc. Am. B 29, 2827-2833 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Kielpinski, C. Monroe, and D. J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature (London) 417, 709–711 (2002). [CrossRef]
  2. A. Steane, C. F. Roos, D. Stevens, A. Mundt, D. Leibfried, F. Schmidt-Kaler, and R. Blatt, “Speed of ion-trap quantum-information processors,” Phys. Rev. A 62, 042305 (2000). [CrossRef]
  3. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev. A 57, 120–126 (1998). [CrossRef]
  4. M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R. Wasilewski, O. Stern, and A. Forchel, “Coupling and entangling of quantum states in quantum dot molecules,” Science 291, 451–453 (2001). [CrossRef]
  5. J. Q. You and F. Nori, “Quantum information processing with superconducting qubits in a microwave field,” Phys. Rev. B 68, 064509 (2003).
  6. Z. R. Lin, G. P. Guo, T. Tu, F. Y. Zhu, and G. C. Guo, “Generation of quantum-dot cluster states with a superconducting transmission line resonator,” Phys. Rev. Lett. 101, 230501 (2008). [CrossRef]
  7. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature (London) 409, 46–52 (2001). [CrossRef]
  8. J. W. Pan, S. Gasparoni, R. Ursin, G. Weihs, and A. Zeilinger, “Experimental entanglement purification of arbitrary unknown states,” Nature (London) 423, 417–422 (2003). [CrossRef]
  9. L. M. Duan and H. J. Kimble, “Scalable photonic quantum computation through cavity-assisted interactions,” Phys. Rev. Lett. 92, 127902 (2004). [CrossRef]
  10. Y. F. Xiao, X. M. Lin, J. Gao, Y. Yang, Z. F. Han, and G. C. Guo, “Realizing quantum controlled phase flip through cavity QED,” Phys. Rev. A 70, 042314 (2004). [CrossRef]
  11. J. Cho and H. W. Lee, “Generation of atomic cluster states through the cavity input-output process,” Phys. Rev. Lett. 95, 160501 (2005). [CrossRef]
  12. T. Wilk, S. C. Webster, A. Kuhn, and G. Rempe, “Single-atom single-photon quantum interface,” Science 317, 488–490 (2007). [CrossRef]
  13. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darqui, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature (London) 440, 779–782 (2006). [CrossRef]
  14. N. B. An and J. Kim, “Cluster-type entangled coherent states: generation and application,” Phys. Rev. A 80, 042316 (2009). [CrossRef]
  15. P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett. 96, 240501 (2006). [CrossRef]
  16. T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interactions between matter qubits and bright coherent light,” New J. Phys. 8, 184 (2006). [CrossRef]
  17. F. Mei, Y. F. Yu, X. L. Feng, Z. M. Zhang, and C. H. Oh, “Quantum entanglement distribution with hybrid parity gate,” Phys. Rev. A 82, 052315 (2010). [CrossRef]
  18. F. Mei, Y. F. Yu, X. L. Feng, S. L. Zhu, and Z. M. Zhang, “Optical quantum computation with cavities in the intermediate coupling region,” Europhys. Lett. 91, 10001 (2010). [CrossRef]
  19. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  20. Y. N. Li, F. Mei, Y. F. Yu, and Z. M. Zhang, “Long-diatance quantum state transfer through cavity-assisted interaction,” Chin. Phys. B 20, 110305 (2011). [CrossRef]
  21. D. Gottesman and I. L. Chuang, “Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations,” Nature (London) 402, 390–393 (1999). [CrossRef]
  22. X. W. Wang, D. Y. Zhang, S. Q. Tang, L. J. Xie, Z. Y. Wang, and L. M. Kuang, “Photonic two-qubit parity gate with tiny crossCKerr nonlinearity,” Phys. Rev. A 85, 052326 (2012). [CrossRef]
  23. Q. Chen and M. Feng, “Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process,” Phys. Rev. A 79, 064304 (2009). [CrossRef]
  24. J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009). [CrossRef]
  25. K. M. Fortier, S. Y. Kim, M. J. Gibbons, P. Ahmadi, and M. S. Chapman, “Deterministic loading of individual atoms to a high-finesse optical cavity,” Phys. Rev. Lett. 98, 233601 (2007). [CrossRef]
  26. S. Numann, M. Hijlkema, B. Weber, F. Rohde, G. Rempe, and A. Kuhn, “Submicron positioning of single atoms in a microcavity,” Phys. Rev. Lett. 95, 173602 (2005). [CrossRef]
  27. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320, 769–772 (2008). [CrossRef]
  28. B. Dayan, A. S. Parkins, Takao Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008). [CrossRef]
  29. P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, “Strong exciton-photon coupling in a low-Q all-metal mirror microcavity,” Appl. Phys. Lett. 81, 3519–3521 (2002). [CrossRef]
  30. L. M. Duan, B. Wang, and H. J. Kimble, “Robust quantum gates on neutral atoms with cavity-assisted photon scattering,” Phys. Rev. A 72, 032333 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited