OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2861–2868

Method for high resolution and wideband spectroscopy in the terahertz and far-infrared region

Robert A. Stead, Arthur K. Mills, and David J. Jones  »View Author Affiliations

JOSA B, Vol. 29, Issue 10, pp. 2861-2868 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (751 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Asynchronous electro-optic sampling (A-EOS) using two mode-locked lasers with slightly different pulse repetition rates has significantly advanced high-speed time-domain terahertz (THz) spectroscopy on several practical fronts. However, A-EOS also holds strong potential as a precision frequency measurement technique. By carefully considering A-EOS in the frequency domain as a pair of femtosecond frequency combs with a detuned comb spacing, we show there exists a unique one-to-one mapping between a THz frequency comb and the resulting radio frequency comb of the A-EOS signal. With reasonable frequency comb spacing (0.1 to 1 GHz) and detuning frequencies (1 to 50 kHz) of the combs’ repetition rates, interrogation bandwidths of >10THz centered between 10 to 100 THz (300 to 3000cm1) are possible. Furthermore, we calculate the effect of nonuniform spectral phase of the sampling pulse train and wave-vector mismatch within a ZnTe sampling crystal on the expected heterodyne beat signal.

© 2012 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7090) Ultrafast optics : Ultrafast lasers
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:

Original Manuscript: May 29, 2012
Manuscript Accepted: July 26, 2012
Published: September 21, 2012

Robert A. Stead, Arthur K. Mills, and David J. Jones, "Method for high resolution and wideband spectroscopy in the terahertz and far-infrared region," J. Opt. Soc. Am. B 29, 2861-2868 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. van Exter, C. Fattinger, and D. Grischkowsky, “High-brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337–339 (1989). [CrossRef]
  2. Y. Hu, X. Wang, L. Guo, and C. Zhang, “Terahertz time-domain spectroscopic study of carbon monoxide,” Spectrosc. Spectr. Anal. 26, 1008–1011 (2006).
  3. D. Mittleman, R. Jacobsen, R. Neelamani, R. Baraniuk, and M. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998). [CrossRef]
  4. G. Chang, C. J. Divin, C.-H. Liu, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “Power scalable compact THz system based on an ultrafast Yb-doped fiber amplifier,” Opt. Express 14, 7909–7913 (2006). [CrossRef]
  5. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996). [CrossRef]
  6. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542–1544 (2004). [CrossRef]
  7. A. Bartels, A. Thoma, C. Janke, T. Dekorsy, A. Dreyhaupt, S. Winnerl, and M. Helm, “High-resolution THz spectrometer with kHz scan rates,” Opt. Express 14, 430–437 (2006). [CrossRef]
  8. R. V. Krems, W. C. Stwalley, and B. Friedrich, Cold Molecules: Theory, Experiment, Applications (CRC Press, 2009).
  9. A. C. Vutha, W. C. Campbell, Y. V. Gurevich, N. R. Hutzler, M. Parsons, D. Patterson, E. Petrik, B. Spaun, J. M. Doyle, G. Gabrielse, and D. DeMille, “Search for the electric dipole moment of the electron with thorium monoxide,” J. Phys. B At. Mol. Opt. Phys. 43, 074007 (2010). [CrossRef]
  10. J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, “Measurement of the electron electric dipole moment using YbF molecules,” Phys. Rev. Lett. 89, 023003 (2002). [CrossRef]
  11. T. Yasui, Y. Kabetani, E. Saneyoshi, S. Yokoyama, and T. Araki, “Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy,” Appl. Phys. Lett. 88, 241104 (2006). [CrossRef]
  12. Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996). [CrossRef]
  13. S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, “Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis,” Nat. Photonics 5, 306–313 (2011). [CrossRef]
  14. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13, 9029–9038 (2005). [CrossRef]
  15. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb.” Nature 445, 627–630 (2007). [CrossRef]
  16. D. G. Winters, P. Schlup, and R. A. Bartels, “Subpicosecond fiber-based soliton-tuned mid-infrared source in the 9.7–14.9 μm wavelength region,” Opt. Lett. 35, 2179–2181 (2010). [CrossRef]
  17. G. Gallot and D. Grischkowsky, “Electro-optic detection of terahertz radiation,” J. Opt. Soc. Am. B 16, 1204–1212 (1999). [CrossRef]
  18. Y. Shen, The Principles of Nonlinear Optics, Wiley Classics Library (Wiley-Interscience, 2003).
  19. E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5, 454–458 (1969). [CrossRef]
  20. F. O. Ilday, H. Lim, J. R. Buckley, and F. W. Wise, “Practical all-fiber source of high-power, 120 fs pulses at 1 μm,” Opt. Lett. 28, 1362–1364 (2003). [CrossRef]
  21. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985). [CrossRef]
  22. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985), Vol. 1.
  23. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766–768 (2002). [CrossRef]
  24. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited