OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2875–2885

Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation

Simon Toft Sørensen, Casper Larsen, Uffe Møller, Peter M. Moselund, Carsten L. Thomsen, and Ole Bang  »View Author Affiliations

JOSA B, Vol. 29, Issue 10, pp. 2875-2885 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (1599 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain spectrum on the seeding process. The results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue waves, depending on the modulation instability gain spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.4380) Nonlinear optics : Nonlinear optics, four-wave mixing
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Coherence and Statistical Optics

Original Manuscript: April 5, 2012
Revised Manuscript: August 23, 2012
Manuscript Accepted: August 28, 2012
Published: September 21, 2012

Simon Toft Sørensen, Casper Larsen, Uffe Møller, Peter M. Moselund, Carsten L. Thomsen, and Ole Bang, "Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation," J. Opt. Soc. Am. B 29, 2875-2885 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006). [CrossRef]
  2. P. Beaud, W. Hodel, B. Zysset, and H. Weber, “Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987). [CrossRef]
  3. J. M. Stone and J. C. Knight, “Visibly ‘white’ light generation in uniformphotonic crystal fiber using a microchip laser,” Opt. Express 16, 2670–2675 (2008). [CrossRef]
  4. J. C. Travers and J. R. Taylor, “Soliton trapping of dispersive waves in tapered optical fibers,” Opt. Lett. 34, 115–117(2009). [CrossRef]
  5. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12, 113001 (2010). [CrossRef]
  6. S. T. Sørensen, A. Judge, C. L. Thomsen, and O. Bang, “Optimum fiber tapers for increasing the power in the blue edge of a supercontinuum—group-acceleration matching,” Opt. Lett. 36, 816–818 (2011). [CrossRef]
  7. M. H. Frosz, P. M. Moselund, P. D. Rasmussen, C. L. Thomsen, and O. Bang, “Increasing the blue-shift of a supercontinuum by modifying the fiber glass composition,” Opt. Express 16, 21076–21086 (2008). [CrossRef]
  8. V. Tombelaine, C. Lesvigne, P. Leproux, L. Grossard, V. Couderc, J.-L. Auguste, J.-M. Blondy, G. Huss, and P.-H. Pioger, “Ultra wide band supercontinuum generation in air-silica holey fibers by SHG-induced modulation instabilities,” Opt. Express 13, 7399–7404 (2005). [CrossRef]
  9. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett. 30, 3132–3134 (2005). [CrossRef]
  10. P. M. Moselund, M. H. Frosz, C. L. Thomsen, and O. Bang, “Back-seeding of higher order gain processes in picosecond supercontinuum generation,” Opt. Express 16, 11954–11968(2008). [CrossRef]
  11. P. M. Moselund, “Long-pulsed supercontinuum sources,” Ph.D. dissertation, DTU Fotonik, Dept. of Photonics Engineering, Technical Univ. of Denmark (2009).
  12. N. Brauckmann, M. Kues, T. Walbaum, P. Groß, and C. Fallnich, “Experimental investigations on nonlinear dynamics in supercontinuum generation with feedback,” Opt. Express 18, 7190–7202 (2010). [CrossRef]
  13. M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, and D. S. Chemla, “Femtosecond distributed soliton spectrum in fibers,” J. Opt. Soc. Am. B 6, 1149–1158 (1989). [CrossRef]
  14. O. Bang and M. Peyrard, “Generation of high-energy localized vibrational modes in nonlinear Klein-Gordon lattices,” Phys. Rev. E 53, 4143–4152 (1996). [CrossRef]
  15. O. Bang and P. D. Miller, “Exploiting discreteness for switching in waveguide arrays,” Opt. Lett. 21, 1105–1107(1996). [CrossRef]
  16. F. Luan, D. V. Skryabin, A. V. Yulin, and J. C. Knight, “Energy exchange between colliding solitons in photonic crystal fibers,” Opt. Express 14, 9844–9853 (2006). [CrossRef]
  17. G. Genty, C. M. de Sterke, O. Bang, F. Dias, N. Akhmediev, and J. M. Dudley, “Collisions and turbulence in optical rogue wave formation,” Phys. Lett. A 374, 989–996 (2010). [CrossRef]
  18. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007). [CrossRef]
  19. D. R. Solli, C. Ropers, and B. Jalali, “Active control of rogue waves for stimulated supercontinuum generation,” Phys. Rev. Lett. 101, 233902 (2008). [CrossRef]
  20. G. Genty, J. Dudley, and B. Eggleton, “Modulation control and spectral shaping of optical fiber supercontinuum generation in the picosecond regime,” Appl. Phys. B 94, 187–194(2009). [CrossRef]
  21. G. Genty and J. Dudley, “Route to coherent supercontinuum generation in the long pulse regime,” IEEE J. Quantum Electron. 45, 1331–1335 (2009). [CrossRef]
  22. D. R. Solli, B. Jalali, and C. Ropers, “Seeded supercontinuum generation with optical parametric down-conversion,” Phys. Rev. Lett. 105, 233902 (2010). [CrossRef]
  23. K. K. Y. Cheung, C. Zhang, Y. Zhou, K. K. Y. Wong, and K. K. Tsia, “Manipulating supercontinuum generation by minute continuous wave,” Opt. Lett. 36, 160–162 (2011). [CrossRef]
  24. Q. Li, F. Li, K. K. Y. Wong, A. P. T. Lau, K. K. Tsia, and P. K. A. Wai, “Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation,” Opt. Express 19, 13757–13769 (2011). [CrossRef]
  25. M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am. B 23, 1692–1699 (2006). [CrossRef]
  26. G. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  27. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers–-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29, 635–645 (2012). [CrossRef]
  28. J. Laegsgaard, “Mode profile dispersion in the generalised nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007). [CrossRef]
  29. J. Hult, “A fourth-order Runge–Kutta in the interaction picture method for simulating supercontinuum generation in optical fibers,” J. Lightwave Technol. 25, 3770–3775 (2007). [CrossRef]
  30. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27, 1180–1182 (2002). [CrossRef]
  31. S. T. Sørensen, O. Bang, B. Wetzel, and J. M. Dudley, “Describing supercontinuum noise and rogue wave statistics using higher-order moments,” Opt. Commun. 285, 2451–2455 (2012). [CrossRef]
  32. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited