OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2891–2896

Coherent control of optical bistability in an open Λ-type three-level atomic system

Zhen Wang, Ai-Xi Chen, Yanfeng Bai, Wen-Xing Yang, and Ray-Kuang Lee  »View Author Affiliations

JOSA B, Vol. 29, Issue 10, pp. 2891-2896 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (320 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the hybrid absorptive-dispersive optical bistability (OB) behavior in an open Λ-type three-level atomic system by using a microwave field to drive the hyperfine transition between two lower states, along with the consideration of incoherent pumping and spontaneously generated coherence. Different from the closed system, we show that the bistable threshold intensity and related hysteresis loop can be controlled by adjusting the ratio between atomic injection and exit rates. More interestingly, the appearance and disappearance of OB can be transformed mutually by varying the relative phase of three coherent fields under the condition of a strong spontaneously generated coherence. The manipulation of OB behavior through the intensity of the microwave field and the atomic cooperation parameter is also analyzed.

© 2012 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.1450) Nonlinear optics : Bistability

ToC Category:
Nonlinear Optics

Original Manuscript: June 13, 2012
Revised Manuscript: August 17, 2012
Manuscript Accepted: August 27, 2012
Published: September 24, 2012

Zhen Wang, Ai-Xi Chen, Yanfeng Bai, Wen-Xing Yang, and Ray-Kuang Lee, "Coherent control of optical bistability in an open Λ-type three-level atomic system," J. Opt. Soc. Am. B 29, 2891-2896 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. O. Scully, S. Y. Zhu, and A. Gavrielides, “Degenerate quantum-beat laser: Lasing without inversion and inversion without lasing,” Phys. Rev. Lett. 62, 2813–2816 (1989). [CrossRef]
  2. H. Wang, D. J. Goorskey, and M. Xiao, “Bistability and instability of three-level atoms inside an optical cavity,” Phys. Rev. A 65, 011801(R) (2001). [CrossRef]
  3. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  4. Y. F. Zhu, A. I. Rubiera, and M. Xiao, “Inversionless lasing and photon statistics in a V-type atomic system,” Phys. Rev. A 53, 1065–1071 (1996). [CrossRef]
  5. Y. P. Niu, and S. Q. Gong, “Enhancing Kerr nonlinearity via spontaneously generated coherence,” Phys. Rev. A 73, 053811 (2006). [CrossRef]
  6. Y. Wu, and L. Deng, “Achieving multi-frequency mode entanglement with ultra-slow multi-wave mixing,” Opt. Lett. 29, 1144 (2004). [CrossRef]
  7. Y. Wu and X. Yang, “Highly efficient four-wave mixing in a double-Lambda system in an ultra-slow propagation regime,” Phys. Rev. A 70, 053818 (2004). [CrossRef]
  8. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102, 013601 (2009). [CrossRef]
  9. Y. Wu and L. Deng, “Ultra slow optical solitons in a cold four-state medium,” Phys. Rev. Lett. 93, 143904 (2004). [CrossRef]
  10. Y. Wu and L. Deng, “Ultra slow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064 (2004). [CrossRef]
  11. Y. Wu, “Two-color ultraslow optical solitons via four-wave mixing in cold atom media,” Phys. Rev. A 71, 053820 (2005). [CrossRef]
  12. W. X. Yang, A. X. Chen, L. Si, K. Jiang, X. Yang, and R. K. Lee, “Three coupled ultraslow temporal solitons in a five-level tripod atomic system,” Phys. Rev. A 81, 023814 (2010). [CrossRef]
  13. L. Si, W. X. Yang, J. B. Liu, J. Li, and X. Yang, “Slow vector optics solitons in a cold five-level hyper V-type atomic system,” Opt. Express 17, 7771 (2009). [CrossRef]
  14. S. Q. Gong, S. D. Du, Z. Z. Xu, and S. H. Pan, “Optical bistability via a phase fluctuation effect of the control field,” Phys. Lett. A 222, 237–240 (1996). [CrossRef]
  15. A. Joshi and M. Xiao, “Optical multistability in three-level atoms inside an optical ring cavity,” Phys. Rev. Lett. 91, 143904 (2003). [CrossRef]
  16. A. Joshi, A. Brown, H. Wang, and M. Xiao, “Controlling optical bistability in a three-level atomic system,” Phys. Rev. A 67, 041801(R) (2003). [CrossRef]
  17. J. H. Li, X. Y. Lu, J. M. Luo, and Q. J. Huang, “Optical bistability and multistability via atomic coherence in an N-type atomic medium,” Phys. Rev. A 74, 035801 (2006). [CrossRef]
  18. J. Li, “Coherent control of optical bistability in a microwave-driven V-type atomic system,” Physica D 228, 148 (2007). [CrossRef]
  19. X. Y. Lu, J. H. Li, J. B. Liu, and J. M. Luo, “Optical bistability via quantum interference in a four-level atomic medium,” J. Phys. B 39, 5161 (2006). [CrossRef]
  20. J. Wu, X. Y. Lü, and L. L. Zheng, “Controllable optical bistability and multistability in a double two-level atomic system,” J. Phys. B 43, 161003 (2010). [CrossRef]
  21. Z. P. Wang, “Optical bistability via coherent and incoherent fields in an Er3+-doped yttrium-aluminum-garnet crystal,” Opt. Commun. 283, 3291–3295 (2010). [CrossRef]
  22. H. M. Gibbs, S. L. McCall, and T. N. C. Venkatesan, “Differential gain and bistability using a sodium-filled Fabry-Perot interferometer,” Phys. Rev. Lett. 36, 1135–1138 (1976). [CrossRef]
  23. S. Singh, J. Rai, C. M. Bowden, and A. Postan, “Intrinsic optical bistability with squeezed vacuum,” Phys. Rev. A 45, 5160–5165 (1992). [CrossRef]
  24. P. Galatola, L. A. Lugiato, M. G. Porreca, and P. Tombesi, “Optical switching by variation of the squeezing phase,” Opt. Commun. 81, 175–178 (1991). [CrossRef]
  25. Z. Chen, C. Du, S. Gong, and Z. Z. Xu, “Optical bistability via squeezed vacuum input,” Phys. Lett. A 259, 15–19 (1999). [CrossRef]
  26. C. Liu, S. Gong, X. Fan, and Z. Xu, “Phase control of spontaneously generated coherence induced bistability,” Opt. Commun. 239, 383–388 (2004). [CrossRef]
  27. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997), p. 161.
  28. Y. Wu and X. Yang, “Electromagnetically induced transparency in V-, λ-, and cascade-type schemes beyond steady-state analysis,” Phys. Rev. A 71, 053806 (2005). [CrossRef]
  29. X. Fan, N. Cui, S. Tan, H. Ma, S. Gong, and Z. Xu, “Phase control of gain and dispersion in an open lambda-type inversionless lasing system,” J. Mod. Opt. 52, 2759–2769 (2005). [CrossRef]
  30. R. Bonifacio and L. A. Lugiato, “Optical bistability and cooperative effects in resonance fluorescence,” Phys. Rev. A 18, 1129–1144 (1978). [CrossRef]
  31. A. Joshi, W. Yang, and M. Xiao, “Effect of quantum interference on optical bistability in the three-level V-type atomic system,” Phys. Rev. A 68, 015806 (2003). [CrossRef]
  32. A. Joshi, W. Yang, and M. Xiao, “Hysteresis loop with controllable shape and direction in an optical ring cavity,” Phys. Rev. A 70, 041802(R) (2004). [CrossRef]
  33. Y. Li and M. Xiao, “Electromagnetically induced transparency in a three-level Λ-type system in rubidium atoms,” Phys. Rev. A 51, R2703–R2706 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited