OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2910–2914

Influence of the orientation of optical axis on the transmission properties of one-dimensional photonic crystals containing uniaxial indefinite metamaterial

Amir Madani, Samad Roshan Entezar, Abdolrahman Namdar, and Habib Tajalli  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2910-2914 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002910


View Full Text Article

Enhanced HTML    Acrobat PDF (678 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The transmission properties of a one-dimensional photonic crystal containing uniaxial indefinite metamaterial are investigated using the transfer matrix method. It is shown that the photonic bandgaps of the structure strongly depend on the orientation of the optical axis of the indefinite metamaterial. The results show that it is possible to obtain the Brewster condition for both TE and TM polarizations. This condition noticeably affects the profiles of the electromagnetic field inside the one-dimensional periodic structure.

© 2012 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3918) Materials : Metamaterials
(160.5298) Materials : Photonic crystals

ToC Category:
Materials

History
Original Manuscript: June 11, 2012
Revised Manuscript: August 25, 2012
Manuscript Accepted: August 25, 2012
Published: September 26, 2012

Citation
Amir Madani, Samad Roshan Entezar, Abdolrahman Namdar, and Habib Tajalli, "Influence of the orientation of optical axis on the transmission properties of one-dimensional photonic crystals containing uniaxial indefinite metamaterial," J. Opt. Soc. Am. B 29, 2910-2914 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2910


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  3. J. B. Pendry, “Negative refraction makes light run backward in time,” Phys. World 13, 27–29 (2000).
  4. N. Seddon and T. Beapark, “Observation of inverse Doppler effect,” Science 302, 1537–1540 (2003). [CrossRef]
  5. I. V. Shadrivov, A. Zharov, and Y. S. Kivshar, “Giant Goos-Hanchen effect at the reflection from left-handed metamaterials,” Appl. Phys. Lett. 83, 2713–2715 (2003). [CrossRef]
  6. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “Observation of total omnidirectional refection from a one-dimensional dielectric lattice,” Appl. Phys. A: Mater. Sci. Process. 68, 25–28 (1999). [CrossRef]
  7. S. John, “Strong localization of photon in certain disordered dielectric superlattice,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef]
  8. S. John and T. Quang, “Spontaneous emission near the edge of a photonic band gap,” Phys. Rev. A 50, 1764–1769 (1994). [CrossRef]
  9. P. St. J. Russell, S. Tredwell, and P. J. Roberts, “Full photonic bandgapes and spontaneous emission control in 1D multilayer dielectric structures,” Opt. Commun. 160, 66–71 (1999). [CrossRef]
  10. S. Y. Lin, E. Chow, and V. Hietala, “Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,” Science 282, 274–276 (1998). [CrossRef]
  11. B. Temelkuran and E. Ozbay, “Experimental demonstration of photonic crystal based waveguides,” Appl. Phys. Lett. 74, 486–488 (1999). [CrossRef]
  12. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003). [CrossRef]
  13. H. Jiang, H. Chen, H. Li, Y. Zhang, J. Zi, and S.-Y. Zhu, “Properties of one-dimensional photonic crystals containing single-negative materials,” Phys. Rev. E 69, 066607 (2004). [CrossRef]
  14. H. Jiang, H. Chen, H. Li, and Y. Zhang, “Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials,” Appl. Phys. Lett. 83, 5386–5388 (2003). [CrossRef]
  15. I. V. Shadrivov, A. A. Sukhorukov, and Yuri S. Kivshar, “Beam shaping by a periodic structure with negative refraction,” Appl. Phys. Lett. 82, 3820–3822 (2003). [CrossRef]
  16. N. C. Panoiu, R. M. Osgood, S. Zhang, and S. R. J. Brueck, “Zero-n¯ bandgap in photonic crystal superlattices,” J. Opt. Soc. Am. B 23, 506–513 (2006). [CrossRef]
  17. L.-G. Wang, H. Chen, and S.-Y. Zhu, “Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B 70, 245102 (2004). [CrossRef]
  18. H. Luo, Z. Ren, W. Shu, and F. Li, “Wave propagation in an anisotropic metamaterial with single-sheeted hyperboloid dispersion relation,” Appl. Phys. A 87, 245–249 (2007). [CrossRef]
  19. T. Pan, G.-D. Xu, T.-C. Zang, and L. Gao, “Study of a slab waveguide loaded with dispersive anisotropic metamaterials,” Appl. Phys. A 95, 367–372 (2009). [CrossRef]
  20. Z. P. Wang, C. Wang, and Z. H. Zhang, “Goos-Hänchen shift of the uniaxially anisotropic left-handed material film with an arbitrary angle between the optical axis and the interface,” Opt. Commun. 281, 3019–3024 (2008). [CrossRef]
  21. M. Cheng, R. Chen, and S. Feng, “Lateral shifts of an optical beam in an anisotropic metamaterial slab,” Eur. Phys. J. D 50, 81–85 (2008). [CrossRef]
  22. N. V. Ilin, A. I. Smirnov, and I. G. Kondratiev, “Features of surface modes in metamaterial layers,” Metamaterials 3, 82–89 (2009). [CrossRef]
  23. N.-H. Shen, S. Foteinopoulou, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, “Compact planar far-field superlens based on anisotropic left-handed metamaterials,” Phys. Rev. B 80, 115123 (2009). [CrossRef]
  24. G. Ren, Z. Lai, C. Wang, Q. Feng, L. Liu, K. Liu, and X. Luo, “Subwavelength focusing of light in the planar anisotropic metamaterials with zone plates,” Opt. Express 18, 18151–18157 (2010). [CrossRef]
  25. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003). [CrossRef]
  26. Y. Xiang, X. Dai, and S. Wen, “Omnidirectional gaps of one-dimensional photonic crystals containing indefinite metamaterials,” J. Opt. Soc. Am. B 24, 2033–2039 (2007). [CrossRef]
  27. Y. Xiang, X. Dai, S. Wen, and D. Fan, “Properties of omnidirectional gap and defect mode of one-dimensional photonic crystal containing indefinite metamaterials with a hyperbolic dispersion,” J. Appl. Phys. 102, 093107 (2007). [CrossRef]
  28. L. Liu, L. Zhang, and Y. Zhang, “The transmission properties of one-dimensional photonic crystals containing indefinite metamaterials,” in Proceedings of 2008 International Workshop on Metamaterials (IEEE, 2008), pp. 221–224.
  29. T. Pan, G. Xu, T. Zang, and L. Gao, “Goos-Hänchen shift in one-dimensional photonic crystals containing uniaxial indefinite medium,” Phys. Status Solidi B 246, 1088–1093 (2009). [CrossRef]
  30. W. Shu, Z. Ren, H. Luo, and F. Li, “Brewster angle for anisotropic materials from the extinction theorem,” Appl. Phys. A 87, 297–303 (2007). [CrossRef]
  31. T. Grzegorczyk, Z. Thomas, and J. Kong, “Inversion of critical angle and Brewster angle in anisotropic left-handed metamaterials,” Appl. Phys. Lett. 86, 251909 (2005). [CrossRef]
  32. A. Alu, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106, 123902 (2011). [CrossRef]
  33. C. Argyropoulos, G. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alu, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85, 024304 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited