OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2915–2923

Teleportation of superposed coherent states using nonmaximally entangled resources

Hari Prakash and Manoj K. Mishra  »View Author Affiliations

JOSA B, Vol. 29, Issue 10, pp. 2915-2923 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (726 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We consider the problem of teleporting superposed coherent state using nonmaximally entangled coherent state (NMECS) as quantum channel and study the effect of entanglement on the quality of teleportation. Based on the amount of entanglement shared between the sender and the receiver, we propose two unitary operation strategies to be adopted by the receiver to recover replica of information state with as large a fidelity as possible, and analyzed the behavior of minimum average fidelity (MAF) and mean fidelity (MF) with respect to entanglement. It is fascinatingly found that if the maximally entangled coherent state used in previously proposed schemes is replaced by a particular NMECS, MAF of quantum teleportation increases appreciably at small coherent amplitudes. For coherent amplitudes with |α|20.5, MECS gives higher MF, while for |α|20.5, NMECS gives higher MF.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: May 22, 2012
Revised Manuscript: August 7, 2012
Manuscript Accepted: August 29, 2012
Published: September 27, 2012

Hari Prakash and Manoj K. Mishra, "Teleportation of superposed coherent states using nonmaximally entangled resources," J. Opt. Soc. Am. B 29, 2915-2923 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. H. Bennett, H. G. Brassard, C. Crepeau, R. Joza, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolosky-Rosen channels,” Phys. Rev. Lett. 70, 1895–1899 (1993). [CrossRef]
  2. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935). [CrossRef]
  3. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390, 575–579 (1997). [CrossRef]
  4. Y.-H. Kim, S. P. Kulik, and Y. Shilo, “Quantum teleportation of a polarization state with a complete Bell state measurement,” Phys. Rev. 86, 1370–1373 (2001). [CrossRef]
  5. R. Ursin, T. Jennewein, M. Aspelmeyer, R. Kaltenbaek, M. Lindenthal, P. Walther, and A. Zeilinger, “Communication: Quantum teleportation across the Danube,” Nature 430, 849–849 (2004). [CrossRef]
  6. B. C. Sanders, “Entangled coherent states,” Phys. Rev. A 45, 6811–6815 (1992). [CrossRef]
  7. C. C. Gerry, “Generation of optical macroscopic superposition states via state reduction with a Mach-Zehnder interferometer containing a Kerr medium,” Phys. Rev. A 59, 4095–4098 (1999). [CrossRef]
  8. J. C. Howell and J. A. Yeazell, “Entangling macroscopic quantum states,” Phys. Rev. A 62, 012102 (2000). [CrossRef]
  9. J.-Q. Liao and L.-M. Kuang, “Generation of entangled coherent state of two cavity fields via coupling to a SQUID-based charge qubit,” J. Phys. B 40, 1845–1852 (2007). [CrossRef]
  10. X. Wang and B. C. Sanders, “Multipartite entangled coherent state,” Phys. Rev. A 65, 012303 (2001). [CrossRef]
  11. S. Sivakumar, “Entanglement in bipartite generalized coherent states,” Int. J. Theor. Phys. 48, 894–904 (2009). [CrossRef]
  12. O. Hirota, S. J. van Enk, K. Nakamura, M. Sohma, and K. Kato, “Entangled nonorthogonal states and their decoherence properties,” http://arxiv.org/abs/quant-ph/0101096 .
  13. O. Hirota and M. Sasaki, “Entangled state based on nonorthogonal states,” http://arxiv.org/abs/quant-ph/0101018 .
  14. B. Yurke and D. Stoler, “Generating quantum mechanical superpostions of macroscopically distinguishable states via amplitude dispersion,” Phys. Rev. Lett. 57, 13–16 (1986). [CrossRef]
  15. B. C. Sanders and G. J. Milburn, “Quantum limits to all-optical phase shifts in a Kerr nonlinear medium,” Phys. Rev. A 45, 1919–1923 (1992). [CrossRef]
  16. H. Jeong, M. S. Kim, T. C. Ralph, and B. S. Ham, “Generation of macroscopic superposition states with small nonlinearity,” Phys. Rev. A 70, 061801(R) (2004). [CrossRef]
  17. H. Jeong, A. P. Lund, and T. C. Ralph, “Production of superpositions of coherent states in traveling optical fields with inefficient photon detection,” Phys. Rev. A 72, 013801 (2005). [CrossRef]
  18. A. P. Lund, H. Jeong, T. C. Ralph, and M. S. Kim, “Conditional production of superpostions of coherent states with inefficient photon detection,” Phys. Rev. A 70, 020101 (2004). [CrossRef]
  19. B. Wang and L. M. Duan, “Engineering superpostions of coherent states in coherent optical pulses through cavity-assisted interaction,” Phys. Rev. A 72, 022320 (2005). [CrossRef]
  20. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrodinger kittens for quantum information processing,” Science 312, 83–86 (2006). [CrossRef]
  21. J. S. N. Nielsen, B. M. Nielsen, C. Hettich, K. Molmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006). [CrossRef]
  22. S. J. Van Enk and O. Hirota, “Entangled coherent states: teleportation and decoherence,” Phys. Rev. A 64, 022313 (2001). [CrossRef]
  23. X. Wang, “Quantum teleportation of entangled coherent states,” Phys. Rev. A 64, 022302 (2001). [CrossRef]
  24. H. Prakash, N. Chandra, R. Prakash, and Shivani, “Improving the teleportation of entangled coherent states,” Phys. Rev. A 75, 044305 (2007). [CrossRef]
  25. H. Prakash, N. Chandra, R. Prakash, and Shivani, “Swapping between two pairs of non-orthogonal entangled coherent states,” Int. J. Mod. Phys. B 23, 2083–2092 (2009). [CrossRef]
  26. H. Prakash, N. Chandra, R. Prakash, and Shivani, “Almost perfect teleportation using 4-partite states,” Int. J. Mod. Phys. B 24, 3383–3394 (2010). [CrossRef]
  27. H. Prakash, N. Chandra, R. Prakash, and Shivani, “Effect of decoherence on fidelity in teleportation using entangled coherent states,” J. Phys. B 40, 1613–1626 (2007). [CrossRef]
  28. J.-Q. Liao and L.-M. Kuang, “Near-complete teleportation of two-mode four component entangled coherent states,” J. Phys. B 40, 1183–1194 (2007). [CrossRef]
  29. H. N. Phien and N. B. An, “Quantum teleportation of an arbitrary two-mode coherent state using only linear optics elements,” Phys. Lett. A 372, 2825–2829 (2008). [CrossRef]
  30. M. K. Mishra and H. Prakash, “Teleportation of a two-mode entangled coherent state encoded with two-qubit information,” J. Phys. B 43, 185501 (2010). [CrossRef]
  31. T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” http://arxiv.org/abs/quant-ph/0306004 .
  32. H. Jeong and M. S. Kim, “Efficient quantum computation using coherent states,” Phys. Rev. A 65, 042305 (2002). [CrossRef]
  33. W. K. Wootters, “Entanglement of formation of an arbitrary state of two qubits,” Phys. Rev. Lett. 80, 2245–2248 (1998). [CrossRef]
  34. N. Lutkenhaus, J. Calsaminglia, and K.-A. Suominen, “Bell measurements for teleportation,” Phys. Rev. A 59, 3295–3300 (1999). [CrossRef]
  35. L. Henderson, L. Hardy, and V. Vedral, “Two-state teleportation,” Phys. Rev. A 61, 062306 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited