OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2924–2928

Symmetry breaking in photonic crystal waveguide coupled with the dipole modes of a nonlinear optical cavity

Evgeny N. Bulgakov and Almas F. Sadreev  »View Author Affiliations

JOSA B, Vol. 29, Issue 10, pp. 2924-2928 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (839 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present stable symmetry breaking solutions in a nonlinear optical cavity with dipole eigenmodes embedded into the propagation band of a directional photonic crystal waveguide for symmetric injecting condition. We demonstrate how this phenomenon can be exploited for all-optical switching of light transmission from the one side of the waveguide to another by application of input pulses. When the light injected to both sides of the waveguide has equal intensities but different phases, we reveal a wealth of new solutions.

© 2012 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.5890) Nonlinear optics : Scattering, stimulated

ToC Category:
Nonlinear Optics

Original Manuscript: June 14, 2012
Revised Manuscript: September 8, 2012
Manuscript Accepted: September 8, 2012
Published: September 27, 2012

Evgeny N. Bulgakov and Almas F. Sadreev, "Symmetry breaking in photonic crystal waveguide coupled with the dipole modes of a nonlinear optical cavity," J. Opt. Soc. Am. B 29, 2924-2928 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Otsuka and K. Ikeda, “Hierarchical multistability and cooperative flip-flop operation in a bistable optical system with distributed nonlinear elements,” Opt. Lett. 12, 539–601(1987). [CrossRef]
  2. M. Haelterman and P. Mandel, “Pitchfork bifurcation using a two-beam nonlinear Fabry–Perot interferometer: an analytical study,” Opt. Lett. 15, 1412–1414 (1990). [CrossRef]
  3. I. V. Babushkin, Yu. A. Logvin, and N. A. Loiko, “Symmetry breaking in optical dynamics of two bistable thin films,” Quantum Electron. 28, 104–107 (1998). [CrossRef]
  4. B. Maes, M. Soljaĉić, J. D. Joannopoulos, P. Bienstman, R. Baets, S.-P. Gorza, and M. Haelterman, “Switching through symmetry breaking in coupled nonlinear micro-cavities,” Opt. Express 14, 10678–10683 (2006). [CrossRef]
  5. B. Maes, P. Bienstman, and R. Baets, “Symmetry breaking with coupled Fano resonances,” Opt. Express 16, 3069–3076 (2008). [CrossRef]
  6. E. Bulgakov, K. Pichugin, and A. Sadreev, “Symmetry breaking for transmission in a photonic waveguide coupled with two off-channel nonlinear defects,” Phys. Rev. B 83, 045109(2011). [CrossRef]
  7. E. Bulgakov and A. Sadreev, “Switching through symmetry breaking for transmission in a T-shaped photonic waveguide coupled with two identical nonlinear micro-cavities,” J. Phys. Condens. Matter 23, 315303 (2011). [CrossRef]
  8. N. Akhmediev and A. Ankiewicz, “Novel soliton states and bifurcation phenomena in nonlinear fiber couplers,” Phys. Rev. Lett. 70, 2395–2398 (1993). [CrossRef]
  9. N. Dror and B. A. Malomed, “Spontaneous symmetry breaking in coupled parametrically driven waveguides,” Phys. Rev. E 79, 016605 (2009). [CrossRef]
  10. V. A. Brazhnyi and B. A. Malomed, “Spontaneous symmetry breaking in Schrödinger lattices with two nonlinear sites,” Phys. Rev. A 83, 053844 (2011). [CrossRef]
  11. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Elimination of cross talk in waveguide intersections,” Opt. Lett. 23, 1855–1857 (1998). [CrossRef]
  12. M. F. Yanik, S. Fan, M. Soljačić, and J. D. Joannopoulos, “All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry,” Opt. Lett. 28, 2506–2508 (2003). [CrossRef]
  13. E. N. Bulgakov and A. F. Sadreev, “Giant optical vortex in photonic crystal waveguide with nonlinear optical cavity,” Phys. Rev. B 85, 165305–165306 (2012). [CrossRef]
  14. J. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2008).
  15. W. Suh, Z. Wang, and S. Fan, “Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities,” IEEE J. Quantum Electron. 40, 1511–1518 (2004). [CrossRef]
  16. J. Bravo-Abad, S. A. Rodriguez, P. Bermel, S. G. Johnson, J. D. Joannopoulos, and M. Soljaĉić, “Enhanced nonlinear optics in photonic-crystal microcavities,” Opt. Express 15, 16161–16176 (2007). [CrossRef]
  17. C. F. Chien and R. V. Waterhouse, “Singular points of intensity streamlines in two-dimensional sound fields,” J. Acoust. Soc. Am. 101, 705–712 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited