OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 10 — Oct. 1, 2012
  • pp: 2929–2934

Engineering of effective second-order nonlinearity in uniform and chirped gratings

Ameneh Bostani, Amirhossein Tehranchi, and Raman Kashyap  »View Author Affiliations


JOSA B, Vol. 29, Issue 10, pp. 2929-2934 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002929


View Full Text Article

Enhanced HTML    Acrobat PDF (748 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dependence of second harmonic generation conversion efficiency resulting from the position of poled regions of the second-order nonlinearity in uniform and chirped gratings in ferroelectric materials has been studied analytically and numerically. The displacement of the poled region’s position from a specific location in second-order nonlinear materials can introduce a wavelength shift in a uniform grating’s second harmonic intensity peak and strongly influences the bandwidth and ripple in the harmonic conversion response of chirped gratings. We propose that the poled regions should be located at specific positions within the single period to minimize the ripples and achieve a desired nonlinearity function, and also to significantly improve tolerance to fabrication errors.

© 2012 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 3, 2012
Revised Manuscript: August 30, 2012
Manuscript Accepted: September 1, 2012
Published: September 27, 2012

Citation
Ameneh Bostani, Amirhossein Tehranchi, and Raman Kashyap, "Engineering of effective second-order nonlinearity in uniform and chirped gratings," J. Opt. Soc. Am. B 29, 2929-2934 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-10-2929


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. E. Myers and W. R. Bosenberg, “Periodically poled lithium niobate and quasi-phase-matched optical parametric oscillators,” IEEE J. Quantum Electron. 33, 1663–1672 (1997). [CrossRef]
  2. X. Liu, H. Zhang, Y. Guo, and Y. Li, “Optimal design and applications for quasi-phase-matching three-wave mixing,” IEEE J. Quantum Electron. 38, 1225–1233 (2002). [CrossRef]
  3. G. K. Kitaeva, “Frequency conversion in aperiodic quasi-phase-matched structures,” Phys. Rev. A 76, 043841 (2007). [CrossRef]
  4. M. Houe and P. D. Townsend, “An introduction to methods of periodic poling for second-harmonic generation,” J. Phys. D 28, 1747–1763 (1995). [CrossRef]
  5. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “Optical phase erasure and its application to format conversion through cascaded second-order processes in periodically poled lithium niobate,” Opt. Lett. 33, 1804–1806 (2008). [CrossRef]
  6. F. Ji, R. Lu, B. Li, B. Zhang, and J. Yao, “Mid-infrared tunable dual-wavelength generation based on a quasi-phase-matched optical parametric oscillator,” Opt. Commun. 282, 126–128 (2009). [CrossRef]
  7. M. Fujimura, T. Kodama, T. Suhara, and H. Nishihara, “Quasi-phase-matched self-frequency-doubling waveguide laser in Nd:LiNbO3,” IEEE Photon. Technol. Lett. 12, 1513–1515 (2000). [CrossRef]
  8. M. Ahlawat, A. Tehranchi, C. Q. Xu, and R. Kashyap, “Ultrabroadband flattop wavelength conversion based on cascaded sum frequency generation and difference frequency generation using pump detuning in quasi-phase-matched lithium niobate waveguides,” Appl. Opt. 50, E108–E111 (2011). [CrossRef]
  9. J. Wang, J. Sun, X. Zhang, D. Huang, and M. M. Fejer, “All-optical format conversions using periodically poled lithium niobate waveguides,” IEEE J. Quantum Electron. 45, 195–205 (2009). [CrossRef]
  10. G. W. Ross, M. Pollnau, P. G. R. Smith, W. A. Clarkson, P. E. Britton, and D. C. Hanna, “Generation of high-power blue light in periodically poled LiNbO3,” Opt. Lett. 23, 171–173 (1998). [CrossRef]
  11. V. V. Volkov and A. S. Chirkin, “Quasi-phase-matched parametric amplification of waves with low-frequency pumping,” Quantum Electron. 28, 95–96 (1998). [CrossRef]
  12. K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, “High-efficiency LiNbO3 waveguide second-harmonic generation devices with ferroelectric-domain-inverted gratings fabricated by applying voltage,” J. Lightwave Technol. 14, 462–468 (1996). [CrossRef]
  13. X. Liu, H. Zhang, and Y. Guo, “Theoretical analyses and optimizations for wavelength conversion by quasi-phase-matching difference frequency generation,” J. Lightwave Technol. 19, 1785–1792 (2001). [CrossRef]
  14. T. Suhara and H. Nishihara, “Theoretical analysis of waveguide second-harmonic generation phase matched with uniform and chirped gratings,” IEEE J. Quantum Electron. 26, 1265–1276 (1990). [CrossRef]
  15. S. Gao, C. Yang, and G. Jin, “Flat broad-band wavelength conversion based on sinusoidally chirped optical superlattices in lithium niobate,” IEEE Photon. Technol. Lett. 16, 557–559 (2004). [CrossRef]
  16. K. L. Baker, “Single-pass gain in a chirped quasi-phase-matched optical parametric oscillator,” Appl. Phys. Lett. 82, 3841–3843 (2003). [CrossRef]
  17. K. A. Tillman and D. T. Reid, “Monolithic optical parametric oscillator using chirped quasi-phase matching,” Opt. Lett. 32, 1548–1550 (2007). [CrossRef]
  18. A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45, 187–194 (2009). [CrossRef]
  19. G.-W. Lu, S. Shinada, H. Furukawa, N. Wada, T. Miyazaki, and H. Ito, “160  Gb/s all-optical phase-transparent wavelength conversion through cascaded SFG-DFG in a broadband linear-chirped PPLN waveguide,” Opt. Express 18, 6064–6070 (2010). [CrossRef]
  20. A. Tehranchi and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second-harmonic generation,” J. Lightwave Technol. 26, 343–349 (2008). [CrossRef]
  21. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  22. J. Huang, X. P. Xie, C. Langrock, R. V. Roussev, D. S. Hum, and M. M. Fejer, “Amplitude modulation and apodization of quasi-phase-matched interactions,” Opt. Lett. 31, 604–606 (2006). [CrossRef]
  23. T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 μm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32, 1129–1131 (2007). [CrossRef]
  24. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  25. T. Umeki, M. Asobe, T. Yanagawa, O. Tadanaga, Y. Nishida, K. Magari, and H. Suzuki, “Broadband wavelength conversion based on apodized χ(2) grating,” J. Opt. Soc. Am. B 26, 2315–2322 (2009). [CrossRef]
  26. K. Pandiyan, Y.-S. Kang, H.-H. Lim, B.-J. Kim, O. Prakash, and M.-S. Cha, “Poling quality evaluation of periodically poled lithium niobate using diffraction method,” J. Opt. Soc. Korea 12, 205–209 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited