OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 2995–2999

Propagation properties of a wave in a disordered multilayered system containing hyperbolic metamaterials

Zhengren Zhang and Yuancheng Fan  »View Author Affiliations


JOSA B, Vol. 29, Issue 11, pp. 2995-2999 (2012)
http://dx.doi.org/10.1364/JOSAB.29.002995


View Full Text Article

Enhanced HTML    Acrobat PDF (440 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electromagnetic wave propagation in one-dimensional disordered structures composed of hyperbolic metamaterials is theoretically investigated. We find that the disordered system can suppress Anderson localization of light at long-wavelength limit under a finite range of incident angle. For isolated frequencies and for specific angles of incidence, it only occurs at areas of Brewster anomaly. Within the zero-n¯ gap, structural disorder has little impact on the localization length. In contrast, the localization length increases with the increase of the degree of disorder in the Bragg gap, giving rise to enhanced transmission of light. At the vicinities of Bragg gap edge, the localization is suppressed (enhanced) evidently outside (inside) the gap. We also find that the increase of disorder or incidence angle can result in an increase of strength and range of resonances. The role of absorption in our disordered system is also discussed.

© 2012 Optical Society of America

OCIS Codes
(120.7000) Instrumentation, measurement, and metrology : Transmission
(160.1190) Materials : Anisotropic optical materials
(260.2110) Physical optics : Electromagnetic optics

ToC Category:
Materials

History
Original Manuscript: July 10, 2012
Revised Manuscript: August 23, 2012
Manuscript Accepted: August 31, 2012
Published: October 3, 2012

Citation
Zhengren Zhang and Yuancheng Fan, "Propagation properties of a wave in a disordered multilayered system containing hyperbolic metamaterials," J. Opt. Soc. Am. B 29, 2995-2999 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-11-2995


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509–514 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 76, 4773–4776 (1996). [CrossRef]
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microwave Theor. Tech. 47, 2075–2084 (1999). [CrossRef]
  4. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000). [CrossRef]
  5. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001). [CrossRef]
  6. R. Marqués, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside-coupled split ring resonators for metamaterial design-theory and experiments,” IEEE Trans. Antennas Propag. 51, 2572–2581 (2003). [CrossRef]
  7. R. Marqués, F. Medina, and R. Rafii-El-Idrissi, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B. 65, 144440 (2002). [CrossRef]
  8. D. R. Smith and D. Schurig, “Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,” Phys. Rev. Lett. 90, 077405 (2003). [CrossRef]
  9. D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, “Partial focusing of radiation by a slab of indefinite media,” Appl. Phys. Lett. 84, 2244–2246 (2004). [CrossRef]
  10. Q. Cheng and T. J. Cui, “Infinite guided modes in a planar waveguide with a biaxially anisotropic metamterial,” J. Opt. Soc. Am. A 23, 1989–1993 (2006). [CrossRef]
  11. A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72, 153102 (2005). [CrossRef]
  12. H. Q. Li, G. C. Gu, and H. Chen, “Disordered dielectric high reflectors with broadband from visible to infrared,” Appl. Phys. Lett. 74, 3260–3262 (1999). [CrossRef]
  13. J. Li, L. Zhou, C. T. Chan, and P. Sheng, “Photonic band gap from a stack of positive and negative index materials,” Phys. Rev. Lett. 90, 083901 (2003). [CrossRef]
  14. L. G. Wang, H. Chen, and S. Y. Zhu, “Omindirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials,” Phys. Rev. B. 70, 245102 (2004). [CrossRef]
  15. I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, “Complete band gaps in one-dimensional left-handed periodic structures,” Phys. Rev. Lett. 95, 193903 (2005). [CrossRef]
  16. A. A. Asatryan, L. C. Botten, M. A. Byrne, V. D. Freilikher, S. A. Gredeskul, I. V. Shadrivov, R. C. McPhedran, and Y. S. Kivshar, “Suppression of Anderson localization in disordered metamaterials,” Phys. Rev. Lett. 99, 193902 (2007). [CrossRef]
  17. A. A. Asatryan, S. A. Gredeskul, L. C. Botten, M. A. Byrne, V. D. Freilikher, I. V. Shadrivov, R. C. McPhedran, and Y. S. Kivshar, “Anderson localization of classical waves in weakly scattering metamaterials,” Phys. Rev. B. 81, 075124 (2010). [CrossRef]
  18. D. Mogilevtsev, F. A. Pinheiro, R. R. dos Santos, S. B. Cavalcanti, and L. E. Oliveira, “Suppression of Anderson localization of light and Brewster anomalies in disordered superlattices containing a dispersive metamaterial,” Phys. Rev. B. 82, 081105(R) (2010). [CrossRef]
  19. D. Mogilevtsev, F. A. Pinheiro, R. R. dos Santos, S. B. Cavalcanti, and L. E. Oliveira, “Light propagation and Anderson localization in disordered superlattices containing dispersive metamaterials: effects of correlated disorder,” Phys. Rev. B. 84, 094204(2011). [CrossRef]
  20. E. Reyes-Gómez, A. Bruno-Alfonso, S. B. Cavalcanti, and L. E. Oliveira, “Anderson localization and Brewster anomalies in photonic disordered quasiperiodic lattices,” Phys. Rev. E. 84, 036604 (2011). [CrossRef]
  21. D. Schurig and D. R. Smith, “Spatial filtering using media with indefinite permittivity and permeability tensors,” Appl. Phys. Lett. 82, 2215–2217 (2003). [CrossRef]
  22. Y. J. Xiang, X. Y. Dai, and S. C. Wen, “Omnidirectional gaps of one-dimensional photonic crystals containing indefinite metamaterials,” J. Opt. Soc. Am. B 24, 2033–2039 (2007). [CrossRef]
  23. P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Springer, 1995).
  24. Y. J. Xiang, X. Y. Dai, S. C. Wen, and D. Y. Fan, “Properties of omnidirectional gap and defect mode of one-dimensional photonic crystal containing indefinite metamaterials with a hyperbolic dispersion,” J. Appl. Phys. 102, 093107(2007). [CrossRef]
  25. J. E. Sipe, P. Sheng, B. S. White, and M. H. Cohen, “Brewster anomalies: a polarization-induced delocalization effect,” Phys. Rev. Lett. 60, 108–111 (1988). [CrossRef]
  26. Y. Tamayama, T. Nakanishi, K. Sugiyama, and M. Kitano, “Observation of Brewster’s effect for transverse-electric electromagnetic waves in metamaterials: experiment and theory,” Phys. Rev. B. 73, 193104 (2006). [CrossRef]
  27. F. M. Izrailev and N. M. Makarov, “Localization in correlated bilayer structures: from photonic crystals to metamaterials and semiconductor superlattices,” Phys. Rev. Lett. 102, 203901 (2009). [CrossRef]
  28. S. F. Liew and H. Cao, “Optical properties of 1D photonic crystals with correlated and uncorrelated disorder,” J. Opt. 12, 024011 (2010). [CrossRef]
  29. K. Yu. Bliokh, Yu. P. Bliokh, V. Freilikher, S. Savelïev, and F. Nori, “Colloquium: unusual resonators: plasmonics, metamaterials, and random media,” Rev. Mod. Phys. 80, 1201–1203(2008). [CrossRef]
  30. S. A. Ramakrishna and J. B. Pendry, “Optical gain removes absorption and increases resolution in a near-field lens,” Phys. Rev. B. 67, 201101 (2003). [CrossRef]
  31. Y. Sivan, S. Xiao, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Frequency-domain simulations of a negative-index material with embedded gain,” Opt. Express 17, 24060–24074 (2009). [CrossRef]
  32. A. Fang, T. Koschny, and C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010). [CrossRef]
  33. A. K. Popov and V. M. Shalaev, “Compensating losses in negative-index metamaterials by optical parametric amplification,” Opt. Lett. 31, 2169–2171 (2006). [CrossRef]
  34. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008). [CrossRef]
  35. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited