OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3027–3033

Realizing self-similar pulses in solid-state laser systems

Victor G. Bucklew and Clifford R. Pollock  »View Author Affiliations


JOSA B, Vol. 29, Issue 11, pp. 3027-3033 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003027


View Full Text Article

Enhanced HTML    Acrobat PDF (385 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel path to achieving self-similar pulses in an all-normal-dispersion solid-state laser resonator is presented and numerically examined. The spatially asymptotic self-similar solution to the nonlinear Schrödinger equation with gain is approached over many cavity round trips and the resultant steady-state solution, stabilized with a saturable absorber possessing a nearly rectangular power response profile, displays minimal spectral, temporal, and amplitude breathing. This method simplifies cavity construction and allows for a more than thirtyfold increase in pulse energy when compared to dispersion-managed soliton mode-locking schemes. A path to directly generable microJoule femtosecond pulses is identified.

© 2012 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(320.5540) Ultrafast optics : Pulse shaping
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Ultrafast Optics

History
Original Manuscript: May 22, 2012
Manuscript Accepted: September 5, 2012
Published: October 11, 2012

Citation
Victor G. Bucklew and Clifford R. Pollock, "Realizing self-similar pulses in solid-state laser systems," J. Opt. Soc. Am. B 29, 3027-3033 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-11-3027


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. E. Spence, P. N. Kean, and W. Sibbett, “60 fsec pulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Lett. 16, 42–44 (1991). [CrossRef]
  2. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999). [CrossRef]
  3. W. H. Renninger, A. Chong, and F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010). [CrossRef]
  4. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, “Self-similar propagation and amplification of parabolic pulses in optical fibers,” Phys. Rev. Lett. 84, 6010–6013 (2000). [CrossRef]
  5. F. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008). [CrossRef]
  6. D. Anderson, M. Desaix, M. Karlsson, M. Lisak, and M. L. Quiroga-Teixeiro, “Wave-breaking-free pulses in nonlinear-optical fibers,” J. Opt. Soc. Am. B 10, 1185–1190 (1993). [CrossRef]
  7. F. O. Ilday, J. R. Buckley, and F. W. Wise, “Self-similar evolution of parabolic pulses in a fiber laser,” in Nonlinear Guided Waves and Their Applications (Optical Society of America, 2004), p. MD8.
  8. B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010). [CrossRef]
  9. A. Chong, H. Liu, B. Nie, B. G. Bale, S. Wabnitz, W. H. Renninger, M. Dantus, and F. W. Wise, “Pulse generation without gain-bandwidth limitation in a laser with self-similar evolution,” Opt. Express 20, 14213–14220 (2012). [CrossRef]
  10. B. G. Bale and S. Wabnitz, “Strong spectral filtering for a mode-locked similariton fiber laser,” Opt. Lett. 35, 2466–2468 (2010). [CrossRef]
  11. C. Antonelli, J. Chen, and F. X. Kartner, “Intracavity pulse dynamics and stability for passively mode-locked lasers,” Opt. Express 15, 5919–5924 (2007). [CrossRef]
  12. F. Ilday, F. Wise, and F. Kaertner, “Possibility of self-similar pulse evolution in a Ti:sapphire laser,” Opt. Express 12, 2731–2738 (2004). [CrossRef]
  13. W. H. Renninger, A. Chong, and F. W. Wise, “Amplifier similaritons in a dispersion-mapped fiber laser,” Opt. Express 19, 22496–22501 (2011). [CrossRef]
  14. C. Jirauschek and F. O. Ilday, “Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse,” Phys. Rev. A 83, 063809 (2011). [CrossRef]
  15. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8, 2068–2076 (1991). [CrossRef]
  16. W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27, 1978–1982 (2010). [CrossRef]
  17. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Dispersion compensation schemes for femtosecond Kerr-lens mode-locked Cr:ZnSe lasers,” in Advanced Solid-State Photonics (Optical Society of America, 2011), p. AMB1.
  18. E. Sorokin and I. T. Sorokina, “Ultrashort-pulsed Kerr-lens modelocked Cr:ZnSe laser,” in The European Conference on Lasers and Electro-Optics (CLEO Europe) 2009 and the European Quantum Electronics Conference , 14–19 June, 2009 (Optical Society of America, 2009), paper CF1_3.
  19. M. N. Cizmeciyan, H. Cankaya, A. Kurt, and A. Sennaroglu, “Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm,” Opt. Lett. 34, 3056–3058 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited