OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3047–3056

Design of a high-modulation-depth, low-energy silicon modulator based on coupling tuning in a resonance-split microring

Tao Wang, Mu Xu, Fei Li, Jiayang Wu, Linjie Zhou, and Yikai Su  »View Author Affiliations


JOSA B, Vol. 29, Issue 11, pp. 3047-3056 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003047


View Full Text Article

Enhanced HTML    Acrobat PDF (1593 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We design a silicon microring modulator based on mutual-mode coupling tuning by introducing an electrically tunable grating in the microring. By tuning the grating reflectivity that changes the mutual coupling strength, optical modulation is realized since transmission switches from a peak to a dip at the resonant wavelength with resonance-splitting in the ring. High modulation depth and low energy consumption can be achieved as sufficient grating reflectivity change can be obtained with low drive voltage. Simulations show that the proposed modulator can achieve a modulation depth of 13 dB at 1550 nm wavelength with energy consumption of 122.3 fJ / bit .

© 2012 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(250.5300) Optoelectronics : Photonic integrated circuits
(250.7360) Optoelectronics : Waveguide modulators

ToC Category:
Optoelectronics

History
Original Manuscript: June 22, 2012
Revised Manuscript: September 7, 2012
Manuscript Accepted: September 14, 2012
Published: October 11, 2012

Citation
Tao Wang, Mu Xu, Fei Li, Jiayang Wu, Linjie Zhou, and Yikai Su, "Design of a high-modulation-depth, low-energy silicon modulator based on coupling tuning in a resonance-split microring," J. Opt. Soc. Am. B 29, 3047-3056 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-11-3047


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. A. B. Miller, “Optical interconnects to silicon,” IEEE J. Sel. Top. Quantum. Electron. 6, 1312–1317 (2000). [CrossRef]
  2. J. D. Meindl, J. A. Davis, P. Zarkesh-Ha, C. S. Patel, K. P. Martin, and P. A. Kohl, “Interconnect opportunities for gigascale integration,” IBM J. Res. Dev. 46, 245–263 (2002). [CrossRef]
  3. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, 615–618 (2004). [CrossRef]
  4. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubi, U. D. Keil, and T. Franck, “High speed silicon Mach-Zehnder modulator,” Opt. Express 13, 3129–3135 (2005). [CrossRef]
  5. A. Huang, G. Li, Y. Liang, S. Mirsaidi, A. Narasimha, T. Pinguet, and C. Gunn, “A 10  Gb/s photonic modulator and WDM MUX/DEMUX integrated with electronics in 0.13 μm SOI CMOS,” presented at the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 2006.
  6. K. Ogawa, K. Goi, Y. T. Tan, T. Liow, X. Tu, Q. Fang, G. Lo, and Dim-Lee Kwon, “Silicon Mach-Zehnder modulator of extinction ratio beyond 10 dB at 10.0–12.5 Gbps,” Opt. Express 19, B26–B31 (2011). [CrossRef]
  7. R. A. Soref and J. P. Lorenzo, “All-silicon active and passive guided-wave components for λ=1.3 and 1.6 μm,” IEEE J. Quantum Electron. 22, 873–879 (1986). [CrossRef]
  8. R. A. Soref and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23, 123–129 (1987). [CrossRef]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435, 325–327 (2005). [CrossRef]
  10. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5  Gbit/s carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007). [CrossRef]
  11. P. Dong, S. Liao, D. Feng, H. Liang, D. Zheng, R. Shafiiha, C. Kung, W. Qian, G. Li, X. Zheng, A. Krishnamoorthy, and M. Asghari, “Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator,” Opt. Express 17, 22484–22490 (2009). [CrossRef]
  12. S. Manipatruni, K. Preston, L. Chen, and M. Lipson, “Ultra-low voltage, ultra-small mode volume silicon microring modulator,” Opt. Express 18, 18235–18242 (2010). [CrossRef]
  13. P. Dong, R. Shafiiha, S. Liao, H. Liang, N. N. Feng, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Wavelength-tunable silicon microring modulator,” Opt. Express 18, 10941–10946 (2010). [CrossRef]
  14. P. Dong, S. Liao, H. Liang, W. Qian, X. Wang, R. Shafiiha, D. Feng, G. Li, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “High-speed and compact silicon modulator based on a racetrack resonator with a 1 V drive voltage,” Opt. Lett. 35, 3246–3248 (2010). [CrossRef]
  15. W. A. Zortman, A. L. Lentine, M. R. Watts, and D. C. Trotter, “Power penalty measurement and frequency chirp extraction in silicon microdisk resonator modulators,” in Optical Fiber Communication Conference, Technical Digest (CD) (Optical Society of America, 2010), paper OM17.
  16. A. Biberman, S. Manipatruni, N. Ophir, L. Chen, M. Lipson, and K. Bergman, “First demonstration of long-haul transmission using silicon microring modulators,” Opt. Express 18, 15544–15552 (2010). [CrossRef]
  17. A. M. Gutierrez, A. Brimont, G. Rasigade, M. Ziebell, D. Marris-Morini, J.-M. Fédéli, L. Vivien, J. Marti, and P. Sanchis, “Ring-assisted Mach–Zehnder interferometer silicon modulator for enhanced performance,” J. Lightwave Technol. 30, 9–14 (2012). [CrossRef]
  18. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002). [CrossRef]
  19. W. D. Sacher and J. K. S. Poon, “Characteristics of microring resonators with waveguide-resonator coupling modulation,” J. Lightwave Technol. 27, 3800–3811 (2009). [CrossRef]
  20. M. A. Popovic, “Resonant optical modulators beyond conventional energy-efficiency and modulation frequency limitations,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2010), paper IMC2.
  21. T. Ye, Y. Zhou, C. Yan, Y. Li, and Y. Su, “Chirp-free optical modulation using a silicon push–pull coupling microring,” Opt. Lett. 34, 785–787 (2009). [CrossRef]
  22. W. D. Sacher, W. M. J. Green, S. Assefa, T. Barwicz, H. Pan, S. M. Shank, Y. A. Vlasov, and J. K. S. Poon, “28  Gb/s silicon microring modulation beyond the linewidth limit by coupling modulation,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2012), paper OM3J.2.
  23. Y. Li, L. Zhang, M. Song, B. Zhang, J. Yang, R. G. Beausoleil, A. E. Willner, and P. D. Dapkus, “Coupled-ring-resonator-based silicon modulator for enhanced performance,” Opt. Express 16, 13342–13348 (2008). [CrossRef]
  24. W. S. Fegadolli, G. Vargas, X. Wang, F. Valini, L. A. M. Barea, J. E. B. Oliveira, N. Frateschi, A. Scherer, V. R. Almeida, and R. R. Panepucci, “Reconfigurable silicon thermo-optical ring resonator switch based on Vernier effect control,” Opt. Express 20, 14722–14733 (2012). [CrossRef]
  25. P. Koonath, T. Indukuri, and B. Jalali, “3-D integrated Vernier filters in silicon,” in Integrated Photonics Research and Applications/Nanophotonics, Technical Digest (Optical Society of America, 2006), paper IMG1.
  26. B. Timotijevic, G. Mashanovich, A. Michaeli, O. Cohen, V. M. N. Passaro, J. Crnjanski, and G. T. Reed, “Tailoring the spectral response of add/drop single and multiple resonators in silicon-on-insulator,” Chinese Opt. Lett. 7, 291–295 (2009). [CrossRef]
  27. R. Boeck, N. A. F. Jaeger, N. Rouger, and L. Chrostowski, “Series-coupled silicon racetrack resonators and the Vernier effect: theory and measurement,” Opt. Express 18, 25151–25157 (2010). [CrossRef]
  28. J. Scheuer, G. T. Paloczi, and A. Yariv, “All optically tunable wavelength-selective reflector consisting of coupled polymeric microring resonators,” Appl. Phys. Lett. 87, 251102 (2005). [CrossRef]
  29. J. V. Hryniewicz, P. P. Absil, B. E. Little, R. A. Wilson, and P.-T. Ho, “Higher order filter response in coupled microring resonators,” IEEE Photon. Technol. Lett. 12, 320–322 (2000). [CrossRef]
  30. R. Grover, V. Van, T. A. Ibrahim, P. P. Absil, L. C. Calhoun, F. G. Johnson, J. V. Hryniewicz, and P.-T. Ho, “Parallel-cascaded semiconductor microring resonators for high-order and wide-FSR filters,” J. Lightwave Technol. 20, 900–905 (2002). [CrossRef]
  31. T. Wang, Z. Zhang, F. Liu, T. Ye, J. Wang, Y. Tian, M. Qiu, and Y. Su, “Modeling of quasi-grating sidewall corrugation in SOI microring add-drop filters,” Opt. Commun. 282, 3464–3467 (2009). [CrossRef]
  32. Q. Li, Z. Zhang, J. Wang, M. Qiu, and Y. Su, “Fast light in silicon ring resonator with resonance-splitting,” Opt. Express 17, 933–940 (2009). [CrossRef]
  33. T. Wang, F. Liu, J. Wang, Z. Zhang, T. Ye, Y. Tian, M. Qiu, and Y. Su, “Pulse delay and advancement in SOI microring resonators with mutual mode coupling,” J. Lightwave Technol. 27, 4734–4743 (2009). [CrossRef]
  34. Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett. 93, 081113 (2008). [CrossRef]
  35. Q. Chang, Q. Li, Z. Zhang, M. Qiu, and Y. Su, “Micrometer-scale optical up-converter using a resonance-split silicon microring resonator in radio over fiber systems,” in Optical Fiber Communication Conference,Technical Digest (CD) (Optical Society of America, 2009), paper JWA48.
  36. B. Little, J. Laine, and S. Chu, “Surface-roughness-induced contradirectional coupling in ring and disk resonators,” Opt. Lett. 22, 4–6 (1997). [CrossRef]
  37. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18  Gb/s silicon micro-ring electro-optic modulator,” in Proceedings of LEOS (IEEE, 2007), pp. 537–538.
  38. G. Li, X. Zheng, J. Yao, H. Thacker, I. Shubin, Y. Luo, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “25  Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning,” Opt. Express 19, 20435–20443 (2011). [CrossRef]
  39. W. A. Zortman, A. L. Lentine, D. C. Trotter, and M. R. Watts, “Low-voltage differentially-signaled modulators,” Opt. Express 19, 26017–26026 (2011). [CrossRef]
  40. R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of E-O switching in silicon,” Proc. SPIE 704, 32–37 (1986).
  41. S. Fathpour, K. K. Tsia, and B. Jalali, “Two-photon photovoltaic effect in silicon,” J. Lightwave Technol. 3, 1211–1217(2007).
  42. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Eletron. 9, 919–933 (1973). [CrossRef]
  43. T. Barwicz, M. A. Popović, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, E. P. Ippen, F. X. Kärtner, and H. I. Smith, “Reconfigurable silicon photonic circuits for telecommunication applications,” Proc. SPIE 6872, 68720Z, (2008). [CrossRef]
  44. M. A. Popović, T. Barwicz, F. Gan, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kärtner, “Transparent wavelength switching of resonant filters,” presented at the Conference on Lasers and Electro-Optics, Baltimore, MD, USAMay2007.
  45. P. Dong, W. Qian, H. Liang, R. Shafiiha, N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18, 9852–9858 (2010). [CrossRef]
  46. F. Shinobu, N. Ishikura, Y. Arita, T. Tamanuki, and T. Baba, “Continuously tunable slow-light device consisting of heater-controlled silicon microring array,” Opt. Express 19, 13557–13564 (2011). [CrossRef]
  47. N. M. Wright, D. J. Thomson, K. L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification in silicon,” Proc. SPIE 7220, 722006 (2009). [CrossRef]
  48. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “Compact silicon microring resonators with ultra-low propagation loss in the C band,” Opt. Express 15, 14467–14475 (2007). [CrossRef]
  49. C. Manolatou and M. Lipson, “All-optical silicon modulators based on carrier injection by two-photon absorption,” J. Lightwave Technol. 24, 1433–1439 (2006). [CrossRef]
  50. M. R. Watts, D. C. Trotter, R. W. Young, and A. L. Lentine, “Ultralow power silicon microdisk modulators and switches,” in Proceedings of 5th IEEE International Conference on Group IV Photonics (IEEE2008), pp. 4–6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited