OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3087–3095

Quasi-resonant and quasi-phase-matched nonlinear second-order phenomena in whispering-gallery resonators

B. Sturman, T. Beckmann, and I. Breunig  »View Author Affiliations

JOSA B, Vol. 29, Issue 11, pp. 3087-3095 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (930 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Recently achieved radial poling of whispering-gallery resonators (WGRs) strongly extends the capabilities of tailoring the second-order nonlinear phenomena, such as second-harmonic generation and optical parametric oscillation, and transferring them to the range of low-power continuous-wave light sources. Owing to discreteness of the frequency spectrum, the resonance and phase-matching conditions for interacting waves cannot be fulfilled simultaneously in WGRs in the general case. Using Yariv’s generic approach to the description of WGR phenomena, we analyze two closely related issues: the possibilities to achieve the resonant and phase-matching conditions using the temperature tuning and the impact of detunings and phase mismatches on the nonlinear transformation efficiencies. It is shown that the radial poling provides important necessary conditions for the subsequent fine tuning to the nonlinear resonances. The requirements to the temperature tuning, as exemplified by the case of lithium niobate, are substantially dependent on the nonlinear process in question, the actual wavelength range, and the pump intensity.

© 2012 Optical Society of America

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(230.5750) Optical devices : Resonators

ToC Category:
Nonlinear Optics

Original Manuscript: July 30, 2012
Manuscript Accepted: August 29, 2012
Published: October 18, 2012

B. Sturman, T. Beckmann, and I. Breunig, "Quasi-resonant and quasi-phase-matched nonlinear second-order phenomena in whispering-gallery resonators," J. Opt. Soc. Am. B 29, 3087-3095 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]
  2. T. J. Kippenberg, S. M. Spillane, D. K. Armani, B. Min, L. Yang, and K. Vahala, Optical Microcavities, K. Vahala, ed. (World Scientific, 2004).
  3. A. B. Matsko, V. S. Ilchenko, R. L. Targat, A. A. Savchenkov, and L. Maleki, “Parametric optics with whispering-gallery modes,” Proc. SPIE 4969, 173–184 (2003). [CrossRef]
  4. A. B. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes—Part I: Basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3–14 (2006). [CrossRef]
  5. L. Maleki and A. B. Matsko, Ferroelectric Crystals for Photonic Applications, P. Ferraro, S. Grilli, and P. De Natale, eds. (Springer, 2009).
  6. S. Weis, R. Riveire, S. Deleglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef]
  7. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92, 043903 (2004). [CrossRef]
  8. J. U. Fürst, D. V. Strekalov, D. Elser, M. Lassen, U. L. Andersen, C. Marquardt, and G. Leuchs, “Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator,” Phys. Rev. Lett. 104, 153901 (2010). [CrossRef]
  9. J. U. Fürst, D. V. Strekalov, D. Elser, A. Aiello, U. L. Andersen, C. Marquardt, and G. Leuchs, “Low-threshold optical parametric oscillations in a whispering gallery mode resonator,” Phys. Rev. Lett. 105, 263904 (2010). [CrossRef]
  10. T. Beckmann, H. Linnenbank, H. Steigerwald, B. Sturman, D. Haertle, K. Buse, and I. Breunig, “Highly tunable low-threshold optical parametric oscillation in radially poled whispering gallery resonators,” Phys. Rev. Lett. 106, 143903 (2011). [CrossRef]
  11. M. M. Fejer, G. A. Magel, D. H. Jundt, and R. L. Byer, “Quasi-phase-matched second harmonic generation: tuning and tolerances,” IEEE J. Quantum Electron. 28, 2631–2654 (1992). [CrossRef]
  12. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, “Resonant optical second harmonic generation and mixing,” J. Quantum Electron. QE-2, 109–124 (1966). [CrossRef]
  13. R. G. Smith, “Theory of intracavity optical second-harmonic generation,” IEEE J. Quantum Electron. 6, 215–223 (1970). [CrossRef]
  14. T. Debuisschert, A. Sizmann, E. Giacobino, and C. Fabre, “Type-II continuous-wave optical parametric oscillators: oscillation and frequency-tuning characteristics,” J. Opt. Soc. Am. B 10, 1668–1680 (1993). [CrossRef]
  15. V. Berger, “Second-harmonic generation in monolithic cavities,” J. Opt. Soc. Am. B 14, 1351–1360 (1997). [CrossRef]
  16. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36, 321–322 (2000). [CrossRef]
  17. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14, 483–485 (2002). [CrossRef]
  18. B. Sturman and I. Breunig, “Generic description of second-order nonlinear phenomena in whispering-gallery resonators,” J. Opt. Soc. Am. B 28, 2465–2471 (2011). [CrossRef]
  19. D. R. Rowland and J. D. Love, “Evanescent wave coupling of whispering gallery modes of a dielectric cylinder,” IEE Proceedings J 140, 177–188 (1993). [CrossRef]
  20. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16, 147–154 (1999). [CrossRef]
  21. U. Schlarb and K. Betzler, “Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate,” Phys. Rev. B 50, 751–757 (1994). [CrossRef]
  22. O. Gayer, Z. Sacks, E. Galun, and A. Arie, “Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3,” Appl. Phys. B 91, 343–348 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited