OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3114–3118

Terahertz waveguide emitters in photonic crystal fiber form

Yanfeng Li, Xiaokun Hu, Feng Liu, Jiang Li, Qirong Xing, Minglie Hu, Chai Lu, and Chingyue Wang  »View Author Affiliations

JOSA B, Vol. 29, Issue 11, pp. 3114-3118 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (622 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The phase-matching condition for broadband terahertz (THz) wave generation based on optical rectification requires that the group velocity of the optical pump beam be equal to the phase velocity of the THz wave. The design of GaP THz waveguide emitters in the form of photonic crystal fibers (PCFs) for a pump source of wavelength 1040 nm is reported. By analogy with a circular waveguide emitter, we show how the phase-matched THz wave frequency can be tuned widely by the air hole pitch and finely tuned by the air hole size. In addition, a single THz wave mode can be guided in the endlessly single-mode regime of the fiber waveguide. The layers of air holes in the PCF design not only allow tunability of the generated THz radiation but also make small emitters easy to handle.

© 2012 Optical Society of America

OCIS Codes
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: June 11, 2012
Revised Manuscript: September 24, 2012
Manuscript Accepted: October 1, 2012
Published: October 22, 2012

Yanfeng Li, Xiaokun Hu, Feng Liu, Jiang Li, Qirong Xing, Minglie Hu, Chai Lu, and Chingyue Wang, "Terahertz waveguide emitters in photonic crystal fiber form," J. Opt. Soc. Am. B 29, 3114-3118 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. H. Siegel, “Terahertz technology,” IEEE Trans. Microw. Theory Tech. 50, 910–928 (2002). [CrossRef]
  2. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26–33 (2002). [CrossRef]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007). [CrossRef]
  4. J. Hebling, K.-L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, “Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities,” J. Opt. Soc. Am. B 25, B6–B19 (2008). [CrossRef]
  5. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990). [CrossRef]
  6. P. Y. Han, M. Tani, M. Usami, S. Kono, R. Kersting, and X.-C. Zhang, “A direct comparison between terahertz time-domain spectroscopy and far-infrared Fourier transform spectroscopy,” J. Appl. Phys. 89, 2357–2359 (2001). [CrossRef]
  7. D. H. Auston, K. P. Cheung, J. A. Valdmanis, and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555–1558 (1984). [CrossRef]
  8. L. Xu, X.-C. Zhang, and D. H. Auston, “Terahertz beam generation by femtosecond optical pulses in electro-optic materials,” Appl. Phys. Lett. 61, 1784–1786 (1992). [CrossRef]
  9. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996). [CrossRef]
  10. Q. Wu and X.-C. Zhang, “7 terahertz broadband GaP electro-optic sensor,” Appl. Phys. Lett. 70, 1784–1786 (1997). [CrossRef]
  11. F. Liu, Y.-J. Song, Q.-R. Xing, M.-L. Hu, Y.-F. Li, C.-L. Wang, L. Chai, W.-L. Zhang, A. M. Zheltikov, and C.-Y. Wang, “Broadband terahertz pulses generated by a compact femtosecond photonic crystal fiber amplifier,” IEEE Photon. Technol. Lett. 22, 814–816 (2010). [CrossRef]
  12. W. Shi and Y. J. Ding, “Designs of terahertz waveguides for efficient parametric terahertz generation,” Appl. Phys. Lett. 82, 4435–4437 (2003). [CrossRef]
  13. J.-I. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, “THz generation from GaP rod-type waveguides,” IEEE Photon. Technol. Lett. 19, 143–145 (2007). [CrossRef]
  14. Z. Ruan, G. Veronis, K. L. Vodopyanov, M. M. Fejer, and S. Fan, “Enhancement of optics-to-THz conversion efficiency by metallic slot waveguides,” Opt. Express 17, 13502–13515 (2009). [CrossRef]
  15. H. Wu, H. Liu, N. Huang, Q. Sun, and J. Wen, “High-power picosecond terahertz-wave generation in photonic crystal fiber via four-wave mixing,” Appl. Opt. 50, 5338–5343 (2011). [CrossRef]
  16. T. Chen, J. Sun, L. Li, J. Tang, and Y. Zhou, “Design of a photonic crystal waveguide for terahertz-wave difference-frequency generation,” IEEE Photon. Technol. Lett. 24, 921–923 (2012). [CrossRef]
  17. G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, “GaP waveguide emitters for high power broadband THz generation pumped by Yb-doped fiber lasers,” Opt. Express 15, 16308–16315 (2007). [CrossRef]
  18. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847–851 (2003). [CrossRef]
  19. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  20. T. A. Birks, J. C. Knight, and P. St. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961–963 (1997). [CrossRef]
  21. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman and Hall, 1983).
  22. D. F. Parsons and P. D. Coleman, “Far infrared optical constants of gallium phosphide,” Appl. Opt. 10, 1683–1685 (1971). [CrossRef]
  23. F. L. Madarasz, J. O. Dimmock, N. Dietz, and K. J. Bachmann, “Sellmeier parameters for ZnGaP2 and GaP,” J. Appl. Phys. 87, 1564–1565 (2000). [CrossRef]
  24. Z. Zhu and T. G. Brown, “Full–vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10, 853–864 (2002).
  25. Y. Li, Y. Yao, M. Hu, L. Chai, and C. Wang, “Improved fully vectorial effective index method for photonic crystal fibers: evaluation and enhancement,” Appl. Opt. 47, 399–406 (2008). [CrossRef]
  26. K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express 14, 2263–2276 (2006). [CrossRef]
  27. J.-P. Negel, R. Hegenbarth, A. Steinmann, B. Metzger, F. Hoos, and H. Giessen, “Compact and cost-effective scheme for THz generation via optical rectification in GaP and GaAs using novel fs laser oscillators,” Appl. Phys. B 103, 45–50 (2011). [CrossRef]
  28. G. Renversez, F. Bordas, and B. T. Kuhlmey, “Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size,” Opt. Lett. 30, 1264–1266 (2005). [CrossRef]
  29. N. A. Mortensen, “Semianalytical approach to short-wavelength dispersion and modal properties of photonic crystal fibers,” Opt. Lett. 30, 1455–1457 (2005). [CrossRef]
  30. K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063103 (2008). [CrossRef]
  31. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009). [CrossRef]
  32. J.-S. Li and S. Zouhdi, “Fano resonance filtering characteristic of high-resistivity silicon photonic crystal slab in terahertz region,” IEEE Photon. Technol. Lett. 24, 625–627 (2012). [CrossRef]
  33. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002). [CrossRef]
  34. K. Nielsen, H. K. Rasmussen, A. J. L. Adam, P. C. M. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited