OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3128–3135

Control of signal coherence in parametric frequency mixing with incoherent pumps: narrowband mid-infrared light generation by downconversion of broadband amplified spontaneous emission source at 1550 nm

Stefan Wabnitz, Antonio Picozzi, Alessandro Tonello, Daniele Modotto, and Guy Millot  »View Author Affiliations


JOSA B, Vol. 29, Issue 11, pp. 3128-3135 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003128


View Full Text Article

Enhanced HTML    Acrobat PDF (1089 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study, with numerical simulations using the generalized nonlinear envelope equation, the processes of optical parametric and difference- and sum-frequency generation (SFG) with incoherent pumps in optical media with both quadratic and third-order nonlinearity, such as periodically poled lithium niobate. With ultrabroadband amplified spontaneous emission pumps or continua (spectral widths > 10 THz ), group-velocity matching of a near-IR pump and a short-wavelength mid-IR (MIR) idler in optical parametric generation may lead to more than 15-fold relative spectral narrowing of the generated MIR signal. Moreover, the SFG process may also lead to 6-fold signal coherence improvements. When using relatively narrowband filtered noise pumps (e.g., spectral widths < 1 THz ), the signal from optical parametric, sum-frequency, and difference-frequency generation has nearly the same spectral width as that of the incoherent pump.

© 2012 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4223) Nonlinear optics : Nonlinear wave mixing

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 15, 2012
Manuscript Accepted: September 14, 2012
Published: October 24, 2012

Citation
Stefan Wabnitz, Antonio Picozzi, Alessandro Tonello, Daniele Modotto, and Guy Millot, "Control of signal coherence in parametric frequency mixing with incoherent pumps: narrowband mid-infrared light generation by downconversion of broadband amplified spontaneous emission source at 1550 nm," J. Opt. Soc. Am. B 29, 3128-3135 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-11-3128


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. H. Harris, “Threshold of multimode parametric oscillators,” IEEE J. Quantum Electron. 2, 701–702 (1966). [CrossRef]
  2. J. Ducuing and N. Bloembergen, “Statistical fluctuations in nonlinear optical processes,” Phys. Rev. 133, A1493–A1502 (1964). [CrossRef]
  3. H. Hsu, “Parametric interactions involving multiple elementary scattering processes,” J. Appl. Phys. 38, 1787–1789 (1967). [CrossRef]
  4. R. H. Byer, M. K. Oshman, J. F. Young, and S. E. Harris, “Visible CW parametric oscillator,” Appl. Phys. Lett. 13, 109–111 (1968). [CrossRef]
  5. A. Piskarskas, V. Smilgevicius, and A. Stabinis, “Optical parametric oscillation excited by an incoherent conical beam,” Opt. Commun. 143, 72–74 (1997). [CrossRef]
  6. A. Marcinkevičius, A. Piskarskas, V. Smilgevičius, and A. Stabinis, “Parametric superfluorescence excited in a nonlinear crystal by two uncorrelated pump beams,” Opt. Commun. 158, 101–104 (1998). [CrossRef]
  7. A. Dubietis, R. Danielius, G. Tamošauskas, and A. Piskarskas, “Combining effect in a multiple-beam-pumped optical parametric amplifier,” J. Opt. Soc. Am. B 15, 1135–1139 (1998). [CrossRef]
  8. A. Piskarskas, V. Smilgevicius, A. Stabinis, and V. Vaicaitis, “Spatially cumulative phenomena and output patterns in optical parametric oscillators and generators pumped by conical beams,” J. Opt. Soc. Am. B 16, 1566–1578 (1999). [CrossRef]
  9. C. Montes, W. Grundkötter, H. Suche, and W. Sohler, “Coherent signal from incoherently cw-pumped singly resonant Ti:LiNbO3 integrated optical parametric oscillators,” J. Opt. Soc. Am. B 24, 2796–2806 (2007). [CrossRef]
  10. G. Tamosauskas, A. Dubietis, G. Valiulis, and A. Piskarkas, “Optical parametric amplifier pumped by two mutually incoherent laser beams,” Appl. Phys. B 91, 305–307 (2008). [CrossRef]
  11. A. Piskarskas, V. Pyragaite, and A. Stabinis, “Generation of coherent waves by frequency up-conversion and down-conversion of incoherent light,” Phys. Rev. A 82, 053817 (2010). [CrossRef]
  12. A. Picozzi and M. Haelterman, “Parametric three-wave soliton generated from incoherent light,” Phys. Rev. Lett. 86, 2010–2013(2001). [CrossRef]
  13. A. Picozzi, C. Montes, and M. Haelterman, “Coherence properties of the parametric three-wave interaction driven from an incoherent pump,” Phys. Rev. E 66, 056605 (2002). [CrossRef]
  14. A. Picozzi and P. Aschieri, “Influence of dispersion on the resonant interaction between three incoherent waves,” Phys. Rev. E 72, 046606 (2005). [CrossRef]
  15. A. Picozzi and M. Haelterman, “Condensation in Hamiltonian parametric wave interaction,” Phys. Rev. Lett. 92, 103901 (2004). [CrossRef]
  16. C. Montes, A. Picozzi, and K. Gallo, “Ultra-coherent signal output from an incoherent cw-pumped singly resonant optical parametric oscillator,” Opt. Commun. 237, 437–449 (2004). [CrossRef]
  17. G. Strömqvist, V. Pasiskevicius, C. Canalias, and C. Montes, “Coherent phase-modulation transfer in counterpropagating parametric down-conversion,” Phys. Rev. A 84, 023825 (2011). [CrossRef]
  18. G. Strömqvist, V. Pasiskevicius, C. Canalias, P. Aschieri, A. Picozzi, and C. Montes, “Temporal coherence in mirrorless optical parametric oscillators,” J. Opt. Soc. Am. B 29, 1194–1202 (2012). [CrossRef]
  19. Y. Yan and C. Yang, “Coherent light wave generated from incoherent pump light in nonlinear Kerr medium,” J. Opt. Soc. Am. B 26, 2059–2063 (2009). [CrossRef]
  20. V. E. Zakharov, V. S. L’vov, and G. Falkovich, Kolmogorov Spectra of Turbulence I (Springer, 1992).
  21. See, e.g., A. Picozzi, “Toward a nonequilibrium thermodynamic description of incoherent nonlinear optics,” Opt. Express 15, 9063–9083 (2007). [CrossRef]
  22. S. Lagrange, H. R. Jauslin, and A. Picozzi, “Thermalization of the dispersive three-wave interaction,” Europhys. Lett. 79, 64001 (2007). [CrossRef]
  23. F. Baronio, M. Conforti, C. De Angelis, M. Andreana, A. Tonello, and V. Couderc, “Tunable light source from large band conversion of continuum in a quadratic crystal,” Laser Phys. Lett. 9, 359–362 (2012). [CrossRef]
  24. M. Conforti, F. Baronio, and C. De Angelis, “Nonlinear envelope equation for broadband optical pulses in quadratic media,” Phys. Rev. A 81, 053841 (2010). [CrossRef]
  25. M. Conforti, F. Baronio, and C. De Angelis, “Ultrabroadband optical phenomena in quadratic nonlinear media,” IEEE Photon. J. 2, 600–610 (2010). [CrossRef]
  26. S. Wabnitz and V. V. Kozlov, “Harmonic and supercontinuum generation in quadratic and cubic nonlinear optical media,” J. Opt. Soc. Am. B 27, 1707–1711 (2010). [CrossRef]
  27. Dispersion data taken from Handbook of Optics, M. Bass, ed., 2nd ed. (McGraw-Hill, 1994), Vol. 2.
  28. See, e.g., L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  29. Note that the nonzero value of μ at the crystal input z=0originates in the relatively small temporal window considered in the simulations, T=21  ps. By increasing T, one reduces the corresponding grid discretization in frequency space, dω=2π/T, which thus reduces the value of μ(z=0). In other terms, in the thermodynamic limit (the limit in which the power P and T tend to infinity keeping constant P/T), the mutual coherence μ tends to zero. However, given the complexity of the GNEE, only a relatively small temporal window can be considered in the numerical integration.
  30. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, D. M. Simanovskii, X. Yu, J. S. Harris, D. Bliss, and D. Weyburne, “Optical parametric generation of a mid-infrared continuum in orientation-patterned GaAs,” Opt. Lett. 31, 71–73 (2006). [CrossRef]
  31. In our examples, the nonlinear length associated with the nonlinear Kerr effect is about 1000 times longer than Lnl and can be neglected in our analysis.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited