OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3141–3149

Nonclassicality and decoherence of photon-subtracted squeezed vacuum states

Xiang-guo Meng, Zhen Wang, Hong-yi Fan, and Ji-suo Wang  »View Author Affiliations

JOSA B, Vol. 29, Issue 11, pp. 3141-3149 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (881 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Extending the recent work completed by Biswas and Agarwal [Phys. Rev. A 75, 032104 (2007)] to the case of m-photon-subtracted squeezed vacuum states (m-PSSVSs), we focus our study on nonclassicality and decoherence of the m-PSSVSs. The nonclassical properties are investigated in terms of the squeezing character, the oscillation of photon-number distribution, and the partial negativity of Wigner function (WF).We then study the effect of decoherence on the m-PSSVSs in two different channels, viz., thermal process and phase damping. In each case, the time-evolution of density operators and WFs of such states is derived analytically. After undergoing the thermal channel, the initial pure m-PSSVSs evolve into a mixed state that turns out to be a Laguerre polynomial of combination of creation and annihilation operators within normal ordering; however, they become another mixed state with the exponential decay due to phase damping. At long times, these fields decay to a highly classical thermal field as a result of thermal noise, but they still keep nonclassicality in the phase-damping channel.

© 2012 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(270.0270) Quantum optics : Quantum optics
(270.2500) Quantum optics : Fluctuations, relaxations, and noise

ToC Category:
Quantum Optics

Original Manuscript: July 11, 2012
Manuscript Accepted: September 20, 2012
Published: October 25, 2012

Xiang-guo Meng, Zhen Wang, Hong-yi Fan, and Ji-suo Wang, "Nonclassicality and decoherence of photon-subtracted squeezed vacuum states," J. Opt. Soc. Am. B 29, 3141-3149 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Eisert, S. Scheel, and M. B. Plenio, “Distilling Gaussian states with Gaussian operations is impossible,” Phys. Rev. Lett. 89, 137903 (2002). [CrossRef]
  2. H. Takahashi, J. S. Neergaard-Nielsenl, M. Takeuchil, M. Takeokal, K. Hayasakal, A. Furusawa, and M. Sasakil, “Entanglement distillation from Gaussian input states,” Nat. Photonics 4, 178–181 (2010). [CrossRef]
  3. Y.-Q. Zhang and J.-B. Xu, “Entanglement swapping with non-Gaussian resources,” J. Mod. Opt. 58, 593–598 (2011). [CrossRef]
  4. S. L. Braunstein and H. J. Kimble, “Teleportation of continuous quantum variables,” Phys. Rev. Lett. 80, 869–872 (1998). [CrossRef]
  5. Y. Yang and F.-L. Li, “Entanglement properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement,” Phys. Rev. A 80, 022315 (2009). [CrossRef]
  6. N. J. Cerf, O. Krüger, P. Navez, R. F. Werner, and M. M. Wolf, “Non-Gaussian cloning of quantum coherent states is optimal,” Phys. Rev. Lett. 95, 070501 (2005). [CrossRef]
  7. P. van Loock, W. J. Munro, K. Nemoto, T. P. Spiller, T. D. Ladd, S. L. Braunstein, and G. J. Milburn, “Hybrid quantum computation in quantum optics,” Phys. Rev. A 78, 022303 (2008). [CrossRef]
  8. T. C. Ralph, A. Gilchrist, G. J. Milburn, W. J. Munro, and S. Glancy, “Quantum computation with optical coherent states,” Phys. Rev. A 68, 042319 (2003). [CrossRef]
  9. T. Opatrný, G. Kurizki, and D.-G. Welsch, “Improvement on teleportation of continuous variables by photon subtraction via conditional measurement,” Phys. Rev. A 61, 032302 (2000). [CrossRef]
  10. M. S. Kim, E. Park, P. L. Knight, and H. Jeong, “Nonclassicality of a photon-subtracted Gaussian field,” Phys. Rev. A 71, 043805 (2005). [CrossRef]
  11. A. Kitagawa, M. Takeoka, M. Sasaki, and A. Chefles, “Entanglement evaluation of non-Gaussian states generated by photon subtraction from squeezed states,” Phys. Rev. A 73, 042310 (2006). [CrossRef]
  12. L.-y. Hu, X.-x. Xu, Z.-s. Wang, and X.-f. Xu, “Photon-subtracted squeezed thermal state: nonclassicality and decoherence,” Phys. Rev. A 82, 043842 (2010). [CrossRef]
  13. S. Olivares and M. G. A. Paris, “Squeezed Fock state by inconclusive photon subtraction,” J. Opt. B: Quantum Semiclass. Opt. 7, S616–S621 (2010). [CrossRef]
  14. A. Biswas and G. S. Agarwal, “Nonclassicality and decoherence of photon-subtracted squeezed states,” Phys. Rev. A 75, 032104 (2007). [CrossRef]
  15. L. Y. Hu and H. Y. Fan, “Statistical properties of photon-subtracted squeezed vacuum in thermal environment,” J. Opt. Soc. Am. B 25, 1955–1964 (2008). [CrossRef]
  16. J. S. Neergaard-Nielsen, M. Takeuchi, K. Wakui, H. Takahashi, K. Hayasaka, M. Takeoka, and M. Sasaki, “Photon subtraction from traveling fields-recent experimental demonstrations,” Prog. Inform. 8, 5–18 (2011). [CrossRef]
  17. K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express 15, 3568–3574 (2007). [CrossRef]
  18. J. Wenger, R. Tualle-Brouri, and P. Grangier, “Non-Gaussian statistics from individual pulses of squeezed light,” Phys. Rev. Lett. 92, 153601 (2004). [CrossRef]
  19. C. Invernizzi, S. Olivares, M. G. A. Paris, and K. Banaszek, “Effect of noise and enhancement of nonlocality in on/off photodetection,” Phys. Rev. A 72, 042105 (2005). [CrossRef]
  20. M. Sasaki and S. Suzuki, “Multimode theory of measurement-induced non-Gaussian operation on wideband squeezed light: analytical formula,” Phys. Rev. A 73, 043807 (2006). [CrossRef]
  21. F. Dell’Anno, S. De Siena, L. Albano, and F. Illuminati, “Continuous-variable quantum teleportation with non-Gaussian resources,” Phys. Rev. A 76, 022301 (2007). [CrossRef]
  22. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 2004).
  23. V. V. Dodonov, “‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years,” J. Opt. B: Quantum Semiclass. Opt. 4, R1–R33 (2002). [CrossRef]
  24. H. Y. Fan, “New antinormal ordering expansion for density operators,” Phys. Lett. A 161, 1–4 (1991). [CrossRef]
  25. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963). [CrossRef]
  26. J. R. Klauder and B. S. Skargerstam, Coherent States (World Scientific, 1985).
  27. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer, 1996).
  28. R. R. Puri, Mathematical Methods of Quantum Optics (Springer-Verlag, 2001).
  29. G. S. Agarwal and E. Wolf, “Calculus for functions of noncommuting operators and general phase-space methods in quantum mechanics. I. mapping theorems and ordering of functions of noncommuting operators,” Phys. Rev. D 2, 2161–2186(1970). [CrossRef]
  30. H. Y. Fan, X. G. Meng, and J. S. Wang, “New form of Legendre polynomials obtained by virtue of excited squeezed state and IWOP technique in quantum optics,” Commun. Theor. Phys. 46, 845–848 (2006). [CrossRef]
  31. W. Schleich, D. F. Walls, and J. A. Wheeler, “Area of overlap and interference in phase space versus Wigner pseudoprobabilities,” Phys. Rev. A 38, 1177–1186 (1988). [CrossRef]
  32. W. Schleich and J. A. Wheeler, “Oscillations in photon distribution of squeezed states and interference in phase space,” Nature 326, 574–577 (1987). [CrossRef]
  33. W. Schleich and J. A. Wheeler, “Oscillations in photon distribution of squeezed states,” J. Opt. Soc. Am. B 4, 1715–1722(1987). [CrossRef]
  34. W. H. Louisell, Quantum Statistical Properties of Radiation (Wiley, 1973).
  35. C. L. Methta, “Diagonal coherent-state representation of quantum operators,” Phys. Rev. Lett. 18, 752–754 (1967). [CrossRef]
  36. E. P. Wigner, “On the quantum correction for thermodynamic equilibrium,” Phys. Rev. 40, 749–759 (1932). [CrossRef]
  37. P. Schleich Wolfgang, Quantum Optics in Phase Space(Wiley-VCH, 2001).
  38. H. Y. Fan and H. L. Cheng, “Two-parameter Radon transformation of the Wigner operator and its inverse,” Chin. Phys. Lett. 18, 850–853 (2001). [CrossRef]
  39. C. W. Gardiner and P. Zoller, Quantum Noise (Springer, 2000).
  40. H. Y. Fan and L. Y. Hu, “Operator-sum representation of density operators as solutions to master equations obtained via the entangled state approach,” Mod. Phys. Lett. B 22, 2435–2468 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited