OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3170–3176

POLYCRYPS visible curing for spatial light modulator based holography

Melissa Infusino, Antonio Ferraro, Antonio De Luca, Roberto Caputo, and Cesare Umeton  »View Author Affiliations

JOSA B, Vol. 29, Issue 11, pp. 3170-3176 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (953 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Realization of highly efficient holographic structures can be obtained by combining the polymer liquid crystal polymer slices (POLICRYPS) technique and the use of a spatial light modulator. To achieve this result, a new prepolymer mixture is necessary that is sensitive to visible light and fulfills all requirements of the POLICRYPS technique. In this paper, we report on our efforts to realize this new mixture and on the first attempts made for fabricating one-dimensional POLICRYPS gratings. Newly obtained diffractive structures have been compared with standard POLICRYPS showing negligible differences.

© 2012 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(160.3710) Materials : Liquid crystals
(160.5470) Materials : Polymers
(160.5335) Materials : Photosensitive materials
(070.6120) Fourier optics and signal processing : Spatial light modulators

ToC Category:

Original Manuscript: May 29, 2012
Revised Manuscript: September 15, 2012
Manuscript Accepted: October 4, 2012
Published: October 30, 2012

Melissa Infusino, Antonio Ferraro, Antonio De Luca, Roberto Caputo, and Cesare Umeton, "POLYCRYPS visible curing for spatial light modulator based holography," J. Opt. Soc. Am. B 29, 3170-3176 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Psaltis, S. R. Quake, and C. H. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006). [CrossRef]
  2. M. J. Madou, Fundamentals of Microfabrication: The Science of Miniaturization (Taylor & Francis, 2002).
  3. J. M. Kohler and W. Fritzsche, Nanotechnology: An Introduction to Nanostructuring Techniques (Wiley-VCH, 2007).
  4. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, T. J. Bunning, and W. W. Adams, “Electrically switchable volume gratings in polymer dispersed liquid crystals,” Appl. Phys. Lett. 64, 1074–1076 (1994). [CrossRef]
  5. R. L. Sutherland, V. P. Tondiglia, L. V. Natarajan, S. Chandra, D. Tomlin, and T. J. Bunning, “Switchable orthorhombic F photonic crystals formed by holographic polymerization-induced phase separation of liquid crystal,” Opt. Express 10, 1074–1082(2002).
  6. M. J. Escuti, J. Qi, and G. P. Crawford, “Two-dimensional tunable photonic crystal formed in a liquid crystal/polymer composite: threshold behavior and morphology,” Appl. Phys. Lett. 83, 1331–1333 (2003). [CrossRef]
  7. M. J. Escuti and G. P. Crawford, “Mesoscale three-dimensional lattices formed in polymer dispersed liquid crystals: a diamond-like face centered cubic,” Mol. Cryst. Liq. Cryst. 421, 23–36 (2004). [CrossRef]
  8. N. Savage, “Digital spatial light modulator,” Nat. Photon. 3, 170–172 (2009). [CrossRef]
  9. G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “Two-dimensional photonic quasi-crystals by single-beam computer generated holography,” Opt. Express 16, 5164–5170 (2008). [CrossRef]
  10. G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, and G. Abbate, “FDTD analysis of photonic quasicrystals with different tiling geometries and fabrication by single beam computer-generated holography,” J. Opt. A 11, 024007 (2009). [CrossRef]
  11. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29, 1261–1263 (2004). [CrossRef]
  12. R. Caputo, A. De Luca, L. De Sio, L. Pezzi, G. Strangi, C. Umeton, A. Veltri, R. Asquini, A. d’Alessandro, D. Donisi, R. Beccherelli, A. V. Sukhov, and N. V. Tabiryan, “Policryps: a liquid-crystalline composed nano/micro structure with a wide range of optical and electro-optical applications,” J. Opt. A 11, 024017 (2009). [CrossRef]
  13. R. Caputo, A. V. Sukhov, C. P. Umeton, and A. Veltri, “Kogelnik-like model for the diffraction efficiency of POLICRYPS gratings,” J. Opt. Soc. Am. B 22, 735–742 (2005). [CrossRef]
  14. W.-B. Huang, Y-G. Liu, Z-H. Diao, C-L. Yang, L-S. Yao, J. Ma, and L. Xuan, “Theory and characteristics of holographic polymer dispersed liquid crystal transmission grating with scaffolding morphology,” Appl. Opt. 51, 4013–4020 (2012). [CrossRef]
  15. L. De Sio, N. V. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16, 7619–7624 (2008). [CrossRef]
  16. L. De Sio, A. Tedesco, S. Serak, N. V. Tabiryan, and C. P. Umeton, “Optically controlled holographic beam splitter,” Appl. Phys. Lett. 97, 183507 (2010). [CrossRef]
  17. G. Gilardi, L. De Sio, R. Beccherelli, R. Asquini, A. d’Alessandro, and C. P. Umeton, “Observation of tunable optical filtering in photosensitive composite structures containing liquid crystals,” Opt. Lett. 36, 4755–4757 (2011). [CrossRef]
  18. G. Strangi, V. Barna, R. Caputo, A. De Luca, C. C. Versace, N. Scaramuzza, C. P. Umeton, R. Bartolino, and G. Price, “Color-tunable organic microcavity laser array using distributed feedback,” Phys. Rev. Lett. 94, 063903 (2005). [CrossRef]
  19. R. Caputo, L. De Sio, A. Veltri, C. P. Umeton, and A. V. Sukhov, “Policryps switchable holographic grating: a promising grating electro optical pixel for high resolution display application,” J. Disp. Technol. 2, 38–51 (2006). [CrossRef]
  20. L. De Sio, A. Veltri, C. Umeton, S. Serak, and N. V. Tabiryan, “All-optical switching of holographic gratings made of polymer-liquid-crystal-polymer slices containing azo-compounds,” Appl. Phys. Lett. 93, 181115 (2008). [CrossRef]
  21. L. De Sio, S. Serak, N. V. Tabiryan, S. Ferjani, A. Veltri, and C. Umeton, “Composite holographic gratings containing light-responsive liquid crystals for visible bichromatic switching,” Adv. Mater. 22, 2316–2319 (2010). [CrossRef]
  22. M. Infusino, A. De Luca, V. Barna, R. Caputo, and C. P. Umeton, “Periodic and aperiodic liquid crystal-polymer composite structures realized via spatial light modulator direct holography,” Opt. Express 20, 23138–23143 (2012). [CrossRef]
  23. C. E. Hoyle, T. Y. Lee, and T. Roper, “Thiol-enes: chemistry of the past with promise for the future,” J. Pol. Sci. A 42, 5301–5338 (2004). [CrossRef]
  24. M. J. Kade, D. J. Burke, and C. J. Hawker, “The power of thiol-ene chemistry,” J. Pol. Sci. A 48, 743–750 (2009). [CrossRef]
  25. L. De Sio, S. Ferjani, G. Strangi, C. P. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7, 3739–3743 (2011). [CrossRef]
  26. S. A. Khan, “Effect of shears on gelation of UV curable polymers,” J. Rheol. 36, 573–587 (1992). [CrossRef]
  27. L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene polymerization,” Polymer 47, 4411–4420 (2006). [CrossRef]
  28. A. Veltri, R. Caputo, C. Umeton, and A. V. Sukhov, “Model for the photo induced formation of diffraction gratings in liquid-crystalline composite materials,” Appl. Phys. Lett. 84, 3492–3494(2004). [CrossRef]
  29. M. Castriota, A. Fasanella, E. Cazzanelli, L. De Sio, R. Caputo, and C. Umeton, “In situ polarized micro-raman investigation of periodic structures realized in liquid-crystalline composites,” Opt. Express 19, 10494–10500 (2011). [CrossRef]
  30. U. Hrozhyk, S. Nersisyan, S. Serak, N. Tabiryan, L. Hoke, D. Steeves, and B. Kimball, “Optical switching of liquid-crystal polarization gratings with nanosecond pulses,” Opt. Lett. 34, 2554–2556 (2009). [CrossRef]
  31. A. Urbas, J. Klosterman, V. Tondiglia, L. Natarajan, R. Sutherland, O. Tsutsumi, T. Ikeda, and T. Bunning, “Optically switchable Bragg reflectors,” Adv. Mater. 16, 1453–1456 (2004). [CrossRef]
  32. Y. J. Liu, Q. Hao, J. S. T. Smalley, J. Liou, I. C. Khoo, and T. J. Huang, “A frequency-addressed plasmonic switch based on dual-frequency liquid crystals,” Appl. Phys. Lett. 97, 091101 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited