OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 11 — Nov. 1, 2012
  • pp: 3177–3182

Manipulation of squeezed state in electromagnetically induced transparency system via dynamic Stark effect

Yuan Li, Zhonghua Li, Dan Wang, Jiangrui Gao, and Junxiang Zhang  »View Author Affiliations


JOSA B, Vol. 29, Issue 11, pp. 3177-3182 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003177


View Full Text Article

Enhanced HTML    Acrobat PDF (785 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We calculate the delay time and noise spectrum of a squeezed state throughout an electromagnetically induced transparency medium with dynamic Stark splitting. It is shown that the noise spectrum splits into two parts with the same delay time, so that the delayed squeezing can survive well in two channels. Furthermore, we show that the two squeezing channels as well as the delay time can be manipulated via one-photon detuning and detection frequency such that the quantum state with high delay time and squeezing can be well preserved. This avoids the influence of large noise from laser near zero detection frequency.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.6570) Quantum optics : Squeezed states

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: July 30, 2012
Revised Manuscript: September 25, 2012
Manuscript Accepted: September 30, 2012
Published: October 30, 2012

Citation
Yuan Li, Zhonghua Li, Dan Wang, Jiangrui Gao, and Junxiang Zhang, "Manipulation of squeezed state in electromagnetically induced transparency system via dynamic Stark effect," J. Opt. Soc. Am. B 29, 3177-3182 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-11-3177


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  2. M. Fleischhauer and M. D. Lukin, “Dark-state polaritons in electromagnetically induced transparency,” Phys. Rev. Lett. 84, 5094–5097 (2000). [CrossRef]
  3. J. I. Cirac, P. Zoller, H. J. Kimble, and H. Mabuchi, “Quantum state transfer and entanglement distribution among distant nodes in a quantum network,” Phys. Rev. Lett. 78, 3221–3224 (1997). [CrossRef]
  4. M. Fleischhauer and M. D. Lukin, “Quantum memory for photons: dark-state polaritons,” Phys. Rev. A 65, 022314 (2002). [CrossRef]
  5. C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. Van Enk, and H. J. Kimble, “Measurement-induced entanglement for excitation stored in remote atomic ensembles,” Nature 438, 828–832 (2005). [CrossRef]
  6. B. Julsgaard, J. Sherson, J. I. Cirac, J. Fiurášek, and E. S. Polzik, “Experimental demonstration of quantum memory for light,” Nature 432, 482–486 (2004). [CrossRef]
  7. C. H. Van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, and M. D. Lukin, “Atomic memory for correlated photon states,” Science 301, 196–200 (2003). [CrossRef]
  8. C. Schori, B. Julsgaard, J. L. Sørensen, and E. S. Polzik, “Recording quantum properties of light in a long-lived atomic spin state: towards quantum memory,” Phys. Rev. Lett. 89, 057903 (2002). [CrossRef]
  9. J. Appel, E. Figueroa, D. Korystov, M. Lobino, and A. I. Lvovsky, “Quantum memory for squeezed light,” Phys. Rev. Lett. 100, 093602 (2008). [CrossRef]
  10. K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Storage and retrieval of a squeezed vacuum,” Phys. Rev. Lett. 100, 093601 (2008). [CrossRef]
  11. A. Peng, M. Johnsson, W. P. Bowen, P. K. Lam, H.-A. Bachor, and J. J. Hope, “Squeezing and entanglement delay using slow light,” Phys. Rev. A 71, 033809 (2005). [CrossRef]
  12. A. Dantan, A. Bramati, and M. Pinard, “Atomic quantum memory: cavity versus single-pass schemes,” Phys. Rev. A 71, 043801 (2005). [CrossRef]
  13. G. Hétet, A. Peng, M. T. Johnsson, J. J. Hope, and P. K. Lam, “Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories,” Phys. Rev. A 77, 012323 (2008). [CrossRef]
  14. M. T. L. Hsu, G. Hétet, O. Glöckl, J. J. Longdell, B. C. Buchler, H.-A. Bachor, and P. K. Lam, “Quantum study of information delay in electromagnetically induced transparency,” Phys. Rev. Lett. 97, 183601 (2006). [CrossRef]
  15. D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, and M. Kozuma, “Ultraslow propagation of squeezed vacuum pulses with electromagnetically induced transparency,” Phys. Rev. Lett. 99, 153602 (2007). [CrossRef]
  16. J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao, “Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: theory and experiment,” Phys. Rev. A 51, 576–584 (1995). [CrossRef]
  17. J. Zhang, J. Cai, Y. Bai, J. Gao, and S.-Y. Zhu, “Optimization of noise property of delayed light in electromagnetically induced transparency,” Phys. Rev. A 76, 033814 (2007). [CrossRef]
  18. G. Hétet, B. C. Buchler, O. Glöckl, M. T. L. Hsu, A. M. Akulshin, H.-A. Bachor, and P. K. Lam, “Delay of squeezing and entanglement using electromagnetically induced transparency in a vapour cell,” Opt. Express 16, 7369–7381 (2008). [CrossRef]
  19. Y. Xiao, T. Wang, M. Baryakhtar, M. Van Camp, M. Crescimanno, M. Hohensee, L. Jiang, D. F. Phillips, M. D. Lukin, S. F. Yelin, and R. L. Walsworth, “Electromagnetically induced transparency with noisy laser,” Phys. Rev. A 80, 041805(R) (2009). [CrossRef]
  20. E. Figueroa, M. Lobino, D. Korystov, J. Appel, and A. I. Lvovsky, “Propagation of squeezed vacuum under electromagnetically induced transparency,” New J. Phys. 11, 013044 (2009). [CrossRef]
  21. K. F. Reim, J. Nunn, V. O. Lorenz, B. J. Sussman, K. C. Lee, N. K. Langford, D. Jaksch, and I. A. Walmsley, “Towards high-speed optical quantum memories,” Nat. Photonics 4, 218–221 (2010). [CrossRef]
  22. S. A. Moiseev and S. Kröll, “Complete reconstruction of the quantum state of a single-photon wave packet absorbed by a Doppler-broadened transition,” Phys. Rev. Lett. 87, 173601 (2001). [CrossRef]
  23. M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, “Multimode quantum memory based on atomic frequency combs,” Phys. Rev. A 79, 052329 (2009). [CrossRef]
  24. M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, “High efficiency coherent optical memory with warm rubidium vapour,” Nat. Commun. 2, 174 (2011). [CrossRef]
  25. L. Yang, L. Zhang, X. Li, L. Han, G. Fu, N. B. Manson, D. Suter, and C. Wei, “Autler-Townes effect in a strongly driven electromagnetically induced transparency resonance,” Phys. Rev. A 72, 053801 (2005). [CrossRef]
  26. T. Y. Abi-Salloum, B. Henry, J. P. Davis, and F. A. Narducci, “Resonances and excitation pathways in four-level N-scheme atomic systems,” Phys. Rev. A 82, 013834 (2010). [CrossRef]
  27. Y. C. Chen, Y. A. Liao, H. Y. Chiu, J. J. Su, and I. A. Yu, “Observation of the quantum interference phenomenon induced by interacting dark resonances,” Phys. Rev. A 64, 053806 (2001). [CrossRef]
  28. J. Hald and E. S. Polzik, “Mapping a quantum state of light onto atoms,” J. Opt. B: Quantum Semiclass. Opt. 3, S83–S92 (2001).
  29. E. S. Polzik, J. Carri, and H. J. Kimble, “Spectroscopy with squeezed light,” Phys. Rev. Lett. 68, 3020–3023 (1992). [CrossRef]
  30. J. C. Camparo, “Conversion of laser phase noise to amplitude noise in an optically thick vapor,” J. Opt. Soc. Am. B 15, 1177–1186 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited