OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3211–3217

Resonant wavelength determination of ovoid metallic nanoparticle pair

Peng Liu, Juan Liu, Xingxing Zhao, Jianjie Dong, Jinghui Xie, and Yongtian Wang  »View Author Affiliations

JOSA B, Vol. 29, Issue 12, pp. 3211-3217 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (829 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An end-to-end ovoid metallic nanoparticle pair is introduced, and its resonant wavelength can be determined by the particle geometry, particle separation, outside medium, and metallic material. The resonant peak shifts as a function of particle separation under different adjacent ends’ aspect ratios obey a universal scale after a normalization process. The scaled peak shifts are exponentially fitted, and the two fitting coefficients are obtained separately for the nanoparticle pair made of silver, gold, and aluminum immersed in several media. Equations are found in which the fitting coefficients can be derived from the medium and metallic refractive index. These equations are used to predict the resonant wavelength of the nanoparticle pair made of gallium in various media.

© 2012 Optical Society of America

OCIS Codes
(290.5850) Scattering : Scattering, particles
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: July 25, 2012
Revised Manuscript: September 28, 2012
Manuscript Accepted: October 9, 2012
Published: November 5, 2012

Peng Liu, Juan Liu, Xingxing Zhao, Jianjie Dong, Jinghui Xie, and Yongtian Wang, "Resonant wavelength determination of ovoid metallic nanoparticle pair," J. Opt. Soc. Am. B 29, 3211-3217 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. E. Talley, J. B. Jackson, C. Oubre, N. K. Grady, C. W. Hollars, S. M. Lane, T. R. Huser, P. Nordlander, and N. J. Halas, “Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates,” Nano Lett. 5, 1569–1574 (2005). [CrossRef]
  2. P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Polarization properties of single metallic nano-spheroid using 3-D boundary element method,” Optik 123, 996–1000 (2012). [CrossRef]
  3. H. Metiu, “Surface enhanced spectroscopy,” Prog. Surf. Sci. 17, 153–320 (1984). [CrossRef]
  4. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985). [CrossRef]
  5. L. Guerrini, I. Izquierdo-Lorenzo, R. Rodriguez-Oliveros, J. A. Sanchez-Gil, S. Sanchez-Cortes, J. V. Garcia-Ramos, and C. Doningo, “α, ω-aliphatic diamines as molecular linkers for engineering Ag nanoparticle clusters: tuning of the interparticle distance and sensing application,” Plasmonics 5, 273–286 (2010). [CrossRef]
  6. P. C. Ray, G. K. Darbha, A. Ray, J. Walker, and W. Hardy, “Gold nanoparticle based FRET for DNA detection,” Plasmonics 2, 173–183 (2007). [CrossRef]
  7. K. T. Yong, M. T. Swihart, H. Ding, and P. N. Prasad, “Preparation of gold nanoparticles and their applications in anisotropic nanoparticle synthesis and bioimaging,” Plasmonics 4, 79–93 (2009). [CrossRef]
  8. H. Y. Lin, C. H. Huang, C. H. Chang, Y. C. Lan, and H. C. Chui, “Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs,” Opt. Express 18, 165–172 (2010). [CrossRef]
  9. J. Beermann, S. M. Novikov, O. Albrektsen, M. G. Nielsen, and S. I. Bozhevolnyi, “Surface-enhanced Raman imaging of fractal shaped periodic metal nanostructures,” J. Opt. Soc. Am. B 26, 2370–2376 (2009). [CrossRef]
  10. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  11. J. Y. Chen, D. L. Wang, J. F. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. N. Xia, and X. D. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett. 7, 1318–1322 (2007). [CrossRef]
  12. S. I. Bozhevolnyi, V. S. Volkov, E. Devaus, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef]
  13. D. DeJarnette, D. K. Roper, and B. Harbin, “Geometric effects on far-field coupling between multipoles of nanoparticles in square arrays,” J. Opt. Soc. Am. B 29, 88–100 (2012). [CrossRef]
  14. B. Willingham and S. Link, “Energy transport in metal nanoparticle chains via sub-radiant Plasmon modes,” Opt. Express 19, 6450–6461 (2011). [CrossRef]
  15. N. L. Rosi and C. A. Mirkin, “Nanostuctures in biodiagnostics,” Chem. Rev. 105, 1547–1562 (2005). [CrossRef]
  16. M. Dridi and A. Vial, “Improved description of the plasmon resonance wavelength shift in metallic nanoparticle pair,” Plasmonics 6, 637–641 (2011). [CrossRef]
  17. C. Tabor, D. V. Haute, and M. A. El-Sayed, “Effect of orientation on plasmonic coupling between gold nanorods,” ACS Nano 3, 3670–3678 (2009). [CrossRef]
  18. F. M. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimmers,” Nano Lett. 10, 1787–1792 (2010). [CrossRef]
  19. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220, 137–141 (2003). [CrossRef]
  20. I. Romero, J. Aizpurua, G. W. Bryant, and F. J. G. Abajo, “Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimmers,” Opt. Express 14, 9988–9999 (2006). [CrossRef]
  21. O. Peña-Rodríguez, U. Pal, V. Rodríguez-Iglesias, L. Rodríguez-Fernández, and A. Oliver, “Configuring Au and Ag nanorods for sensing applications,” J. Opt. Soc. Am. B 28, 714–720 (2011). [CrossRef]
  22. P. K. Jain and M. A. EI-Sayed, “Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells,” Nano Lett. 7, 2854–2854 (2007). [CrossRef]
  23. O. Peña, U. Pal, L. Rodríguez-Fernández, and A. Crespo-Sosa, “Linear optical response of metallic nanoshells in different dielectric media,” J. Opt. Soc. Am. B 25, 1371–1379 (2008). [CrossRef]
  24. L. V. Brown, H. Sobhani, J. B. Lassiter, P. Nordlander, and N. J. Halas, “Heterodimers: plasmonic properties of mismatched nanoparticle pairs,” ACS Nano 4, 819–832 (2010). [CrossRef]
  25. R. Near, C. Tabor, J. S. Duan, R. Pachter, and M. El-Sayed, “Pronounced effects of anisotropy on plasmonic properties of nanorings fabricated by electron beam lithography,” Nano Lett. 12, 2158–2164 (2012). [CrossRef]
  26. T. D. Onuta, M. Waegele, C. C. DuFort, W. L. Schaich, and B. Dragnea, “Optical field enhancement at cusps between adjacent nanoapertures,” Nano Lett. 7, 557–564 (2007). [CrossRef]
  27. E. Simsek, “On the surface plasmon resonance modes of metal nanoparticle chains and arrays,” Plasmonics 4, 223–230 (2009). [CrossRef]
  28. A. M. Funston, C. Novo, Tim. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009). [CrossRef]
  29. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103, 3073–3077 (1999). [CrossRef]
  30. L. Bigot, H. El Hamzaoui, A. Le Rouge, G. Bouwmans, F. Chassagneux, B. Capoen, and M. Bouazaoui, “Linear and nonlinear optical properties of gold nanoparticle-doped photonic crystal fiber,” Opt. Express 19, 19061–19066 (2011). [CrossRef]
  31. N. Berkovitch and M. Orenstein, “Thin wire shortening of plasmonic nanoparticle dimers: the reason for red shifts,” Nano Lett. 11, 2079–2082 (2011). [CrossRef]
  32. C. Rockstuhl, M. G. Salt, and H. P. Herzig, “Analyzing the scattering properties of coupled metallic nanoparticles,” J. Opt. Soc. Am. A 21, 1761–1768 (2004). [CrossRef]
  33. A. Centeno, F. Xie, and N. Alford, “.Light absorption and field enhancement in two-dimensional arrays of closely spaced silver nanoparticles,” J. Opt. Soc. Am. B 28, 325–330 (2011). [CrossRef]
  34. Y. Ekinci, H. H. Solak, and J. F. Loffler, “Plasmon resonances of aluminum nanoparticles and nanorods,” J. Appl. Phys. 104, 083107 (2008). [CrossRef]
  35. P. Albella, B. G. Cueto, F. Gonzalez, F. Moreno, P. C. Wu, T. H. Kim, A. Brown, Y. Yang, H. O. Everitt, and G. Videen, “Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate,” Nano Lett. 11, 3531–3537 (2011). [CrossRef]
  36. E. D. Palik, Handbook of Optical Constants of Solids(Academic, 1998).
  37. P. Liu, J. Liu, J. Liu, X. X. Zhao, J. H. Xie, and Y. T. Wang, “Scattering properties of an individual metallic nano-spheroid by the incident polarized light wave,” Opt. Commun. 284, 1076–1081 (2011). [CrossRef]
  38. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett. 3, 1087–1090 (2003). [CrossRef]
  39. B. M. Ross and L. P. Lee, “Comparison of near- and far- field measures for plasmon resonance of metallic nanoparticles,” Opt. Lett. 34, 896–898 (2009). [CrossRef]
  40. P. K. Jain, W. Y. Huang, and M. A. El-Sayed, “On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation,” Nano Lett. 7, 2080–2088 (2007). [CrossRef]
  41. P. K. Jain and M. A. El-Sayed, “Surface plasmon coupling and its universal size scaling in metal nanostructures of complex geometry: elongated particle pairs and nanosphere trimers,” J. Phys. Chem. C 112, 4954–4960 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited