OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3240–3247

Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides

Alexandr Jonáš, Yasin Karadag, Michael Mestre, and Alper Kiraz  »View Author Affiliations


JOSA B, Vol. 29, Issue 12, pp. 3240-3247 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003240


View Full Text Article

Enhanced HTML    Acrobat PDF (807 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report measurements of ultrahigh quality factors ( Q -factors) of the optical whispering-gallery modes excited via a tapered optical-fiber waveguide in single glycerol–water microdroplets standing on a superhydrophobic surface in air. Owing to the high contact angle of the glycerol–water mixture on the superhydrophobic surface ( > 155 ° ), microdroplets with the geometry of a truncated sphere minimally distorted by gravity and contact line pinning effects could be generated. Q -factors up to 2.3 × 10 6 were observed for such droplets with radii of 100 200 μm exposed to the ambient atmosphere in a closed chamber with controlled relative humidity. Placement of microdroplets in a constant humidity environment permitted prolonged characterization of Q -factors for individual microdroplets. We found that the Q -factors in air were stable over more than 1 h and their measured values were limited mostly by the thermally induced droplet shape fluctuations.

© 2012 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(130.3120) Integrated optics : Integrated optics devices
(300.6320) Spectroscopy : Spectroscopy, high-resolution
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 19, 2012
Revised Manuscript: October 5, 2012
Manuscript Accepted: October 9, 2012
Published: November 8, 2012

Citation
Alexandr Jonáš, Yasin Karadag, Michael Mestre, and Alper Kiraz, "Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides," J. Opt. Soc. Am. B 29, 3240-3247 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-12-3240


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003). [CrossRef]
  2. T. J. Kippenberg and K. J. Vahala, “Cavity opto-mechanics,” Opt. Express 15, 17172–17205 (2007). [CrossRef]
  3. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317, 783–787 (2007). [CrossRef]
  4. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008). [CrossRef]
  5. G. C. Righini, Y. Dumeige, P. Feron, M. Ferrari, G. N. Conti, D. Ristic, and S. Soria, “Whispering gallery mode microresonators: fundamentals and applications,” Rivista Nuovo Cimento 34, 435–488 (2011).
  6. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21, 453–455 (1996). [CrossRef]
  7. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef]
  8. V. V. Datsyuk, “Optics of microdroplets,” J. Mol. Liq. 84, 1308–1316 (2001).
  9. J. P. Reid and L. Mitchem, “Laser probing of single-aerosol droplet dynamics,” Annu. Rev. Phys. Chem. 57, 245–271 (2006). [CrossRef]
  10. P. Chylek, “Resonance structure of Mie scattering: distance between resonances,” J. Opt. Soc. Am. A 7, 1609–1613 (1990). [CrossRef]
  11. J. D. Eversole, H.-B. Lin, and A. J. Campillo, “Cavity-mode identification of fluorescence and lasing in dye-doped microdroplets,” Appl. Opt. 31, 1982–1991 (1992). [CrossRef]
  12. J. D. Eversole, H.-B. Lin, A. L. Huston, A. J. Campillo, P. T. Leung, S. Y. Liu, and K. Young, “High-precision identification of morphology-dependent resonances in optical processes in microdroplets,” J. Opt. Soc. Am. B 10, 1955–1968 (1993). [CrossRef]
  13. S.-X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing droplets: highlighting the liquid-air interface by laser emission,” Science 231, 486–488 (1986). [CrossRef]
  14. H.-B. Lin, A. L. Huston, B. L. Justus, and A. J. Campillo, “Some characteristics of a droplet whispering-gallery-mode laser,” Opt. Lett. 11, 614–616 (1986). [CrossRef]
  15. H. B. Lin, J. D. Eversole, and A. J. Campillo, “Spectral properties of lasing microdroplets,” J. Opt. Soc. Am. B 9, 43–50 (1992). [CrossRef]
  16. A. Kiraz, A. Sennaroglu, S. Doganay, M. A. Dundar, A. Kurt, H. Kalaycioglu, and A. L. Demirel, “Lasing from single, stationary, dye-doped glycerol/water microdroplets located on a superhydrophobic surface,” Opt. Commun. 276, 145–148 (2007). [CrossRef]
  17. M. Tanyeri, R. Perron, and I. M. Kennedy, “Lasing droplets in a microfabricated channel,” Opt. Lett. 32, 2529–2531 (2007). [CrossRef]
  18. S. K. Y. Tang, Z. Li, A. R. Abate, J. J. Agresti, D. A. Weitz, D. Psaltis, and G. M. Whitesides, “A multi-color fast-switching microfluidic droplet dye laser,” Lab Chip 9, 2767–2771 (2009). [CrossRef]
  19. J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985). [CrossRef]
  20. H. B. Lin, J. D. Eversole, and A. J. Campillo, “Continuous-wave stimulated Raman scattering in microdroplets,” Opt. Lett. 17, 828–830 (1992). [CrossRef]
  21. R. J. Hopkins, L. Mitchem, A. D. Ward, and J. P. Reid, “Control and characterisation of a single aerosol droplet in a single-beam gradient-force optical trap,” Phys. Chem. Chem. Phys. 6, 4924–4927 (2004). [CrossRef]
  22. R. Symes, R. M. Sayer, and J. P. Reid, “Cavity enhanced droplet spectroscopy: principles, perspectives and prospects,” Phys. Chem. Chem. Phys. 6, 474–487 (2004). [CrossRef]
  23. A. Sennaroglu, A. Kiraz, M. A. Dündar, A. Kurt, and A. L. Demirel, “Raman lasing near 630 nm from stationary glycerol–water microdroplets on a superhydrophobic surface,” Opt. Lett. 32, 2197–2199 (2007). [CrossRef]
  24. Y. Karadag, M. Gündoğan, M. Y. Yüce, H. Cankaya, A. Sennaroglu, and A. Kiraz, “Prolonged Raman lasing in size-stabilized salt-water microdroplets on a superhydrophobic surface,” Opt. Lett. 35, 1995–1997 (2010). [CrossRef]
  25. A. Serpengüzel, J. C. Swindal, R. K. Chang, and W. P. Acker, “Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering,” Appl. Opt. 31, 3543–3551 (1992). [CrossRef]
  26. J.-Z. Zhang, D. H. Leach, and R. K. Chang, “Photon lifetime within a droplet: temporal determination of elastic and stimulated Raman scattering,” Opt. Lett. 13, 270–272 (1988). [CrossRef]
  27. S. Arnold and L. M. Folan, “Energy transfer and the photon lifetime within an aerosol particle,” Opt. Lett. 14, 387–389 (1989). [CrossRef]
  28. P. T. Leung and K. Young, “Theory of enhanced energy transfer in an aerosol particle,” J. Chem. Phys. 89, 2894–2899 (1988). [CrossRef]
  29. A. Kiraz, A. Kurt, M. A. Dündar, and A. L. Demirel, “Simple largely tunable optical microcavity,” Appl. Phys. Lett. 89, 081118 (2006). [CrossRef]
  30. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22, 1129–1131 (1997). [CrossRef]
  31. M. Cai, O. Painter, and K. J. Vahala, “Observation of critical coupling in a fiber taper to a silica-microsphere whispering-gallery mode system,” Phys. Rev. Lett. 85, 74–77 (2000). [CrossRef]
  32. M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to whispering-gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14, 10800–10810 (2006). [CrossRef]
  33. T. A. Birks and Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992). [CrossRef]
  34. F. Orucevic, V. Lefevre-Seguin, and J. Hare, “Transmittance and near-field characterization of sub-wavelength tapered optical fibers,” Opt. Express 15, 13624–13626 (2007). [CrossRef]
  35. A. Jonas, Y. Karadag, N. Tasaltin, I. Kucukkara, and A. Kiraz, “Probing microscopic wetting properties of superhydrophobic surfaces by vibrated micrometer-sized droplets,” Langmuir 27, 2150–2154 (2011). [CrossRef]
  36. A. Kiraz, Y. Karadağ, and M. Muradoğlu, “Large spectral tuning of a water/glycerol microdroplet by a focused laser: characterization and modeling,” Phys. Chem. Chem. Phys. 10, 6446–6454 (2008). [CrossRef]
  37. D. R. Lide, CRC Handbook of Chemistry and Physics, Internet Version 2012 (CRC, 2012). http://www.hbcpnetbase.com
  38. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  39. P. Chylek, “Partial-wave resonances and the ripple structure in the Mie normalized exctinction cross section,” J. Opt. Soc. Am. 66, 285–287 (1976). [CrossRef]
  40. J. C. Waters, “Accuracy and precision in quantitative fluorescence microscopy,” J. Cell Biol. 185, 1135–1148 (2009). [CrossRef]
  41. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, “Time–independent perturbation for leaking electromagnetic modes in open systems with application to resonances in microdroplets,” Phys. Rev. A 41, 5187–5198 (1990). [CrossRef]
  42. G. Chen, M. M. Mazumder, Y. R. Chemla, A. Serpengüzel, R. K. Chang, and S. C. Hill, “Wavelength variation of laser emission along the entire rim of slightly deformed microdroplets,” Opt. Lett. 18, 1993–1995 (1993). [CrossRef]
  43. V. A. Lubarda and K. A. Talke, “Analysis of the equilibrium droplet shape based on an ellipsoidal droplet model,” Langmuir 27, 10705–10713 (2011). [CrossRef]
  44. S. Arnold, R. Ramjit, D. Keng, V. Kolchenko, and I. Teraoka, “Microparticle photophysics illuminates viral bio-sensing,” Faraday Disc. Chem. Soc. 137, 65–83 (2008). [CrossRef]
  45. H. M. Lai, C. C. Lam, P. T. Leung, and K. Young, “Effect of perturbations on the widths of narrow morphology–dependent resonance in Mie scattering,” J. Opt. Soc. Am. B 8, 1962–1973 (1991). [CrossRef]
  46. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 um wavelength region,” Appl. Opt. 12, 555–563 (1973). [CrossRef]
  47. L. F. Phillips, “A geometrical explanation for the enhanced small–scale roughness of a liquid surface,” J. Phys. Chem. B 108, 1986–1991 (2004). [CrossRef]
  48. H. M. Lai, P. T. Leung, and K. Young, “Limitations on the photon storage lifetime in electromagnetic resonances of highly transparent microdroplets,” Phys. Rev. A 41, 5199–5204(1990). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited