OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3254–3258

Large-area microstructured photomixer as scannable detector of continuous-wave terahertz radiation

Armaghan Eshaghi, Mahmoud Shahabadi, Lukas Chrostowski, and Saeid Kamal  »View Author Affiliations

JOSA B, Vol. 29, Issue 12, pp. 3254-3258 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (252 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Detection of continuous-wave (CW) terahertz (THz) radiation is demonstrated using a large-area microstructured photomixer. The photomixer, which has interdigitated electrodes, is utilized in an incoherent detection scheme without any focusing optics for the incoming THz radiation. The large-area microstructured photomixer is driven at a high laser power of 900 mW, which results in an increased responsivity of 120 mA/W, in comparison with conventional small-area photomixer detectors. By mapping out the receiving pattern of the photomixer detector, we show that the large-area photomixer is capable of scanning the incident THz beam by changing the incidence angles of the CW laser beams used in the photomixing detection process. We demonstrate a scan range of ±50°. Moreover, the optimum spot size of the laser beams illuminating the photomixer detector for maximizing the responsivity of the detector is specified.

© 2012 Optical Society of America

OCIS Codes
(160.5140) Materials : Photoconductive materials
(190.7070) Nonlinear optics : Two-wave mixing

ToC Category:

Original Manuscript: June 27, 2012
Revised Manuscript: September 10, 2012
Manuscript Accepted: October 10, 2012
Published: November 8, 2012

Armaghan Eshaghi, Mahmoud Shahabadi, Lukas Chrostowski, and Saeid Kamal, "Large-area microstructured photomixer as scannable detector of continuous-wave terahertz radiation," J. Opt. Soc. Am. B 29, 3254-3258 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. R. Brown, J. Bjarnason, T. L. J. Chan, D. C. Driscoll, M. Hanson, and A. C. Gossard, “Room temperature, THz photomixing sweep oscillator and its application to spectroscopic transmission through organic materials,” Rev. Sci. Instrum. 75, 5333–5342 (2004). [CrossRef]
  2. A. Luukanen and J. P. Pekola, “A superconducting antenna-coupled hot-spot microbolometer,” Appl. Phys. Lett. 82, 3970–3972 (2003). [CrossRef]
  3. J. Zmuidzinas and P. L. Richards, “Superconducting detectors and mixers for millimeter and submillimeter astrophysics,” Proc. IEEE 92, 1597–1616 (2004). [CrossRef]
  4. L. Liu, J. L. Hesler, H. Xu, A. W. Lichtenberger, and R. M. Weikle, “A broadband quasi-optical terahertz detector utilizing a zero bias Schottky diode,” IEEE Microw. Wirel. Compon. Lett. 20, 504–506 (2010). [CrossRef]
  5. C. Sydlo, O. Cojocari, D. Schherr, T. Goebel, P. Meissner, and H. L. Hartnagel, “Fast THz detectors based on InGaAs Schottky diodes,” Frequenz 62, 107–110 (2008). [CrossRef]
  6. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2008).
  7. A. Hammar, S. Cherednichenko, S. Bevilacqua, V. Drakinskiy, and J. Stake, “Terahertz direct detection in YBa2Cu3O7 microbolometers,” IEEE Trans. Terahertz Sci. Technol. 1, 390–394 (2011). [CrossRef]
  8. S. Cherednichenko, A. Hammar, S. Bevilacqua, V. Drakinskiy, J. Stake, and A. Kalabukhov, “A room temperature bolometer for terahertz coherent and incoherent detection,” IEEE Trans. Terahertz Sci. Technol. 1, 395–402 (2011). [CrossRef]
  9. G. C. Dyer, S. Preu, G. R. Aizin, J. Mikalopas, A. D. Grine, J. L. Reno, J. M. Hensley, N. Q. Vinh, A. C. Gossard, M. S. Sherwin, S. J. Allen, and E. A. Shaner, “Enhanced performance of resonant sub-terahertz detection in a plasmonic cavity,” Appl. Phys. Lett. 100, 083506 (2012). [CrossRef]
  10. A. Lisauskas, U. Pfeiffer, E. Ojefors, P. Haring Bolivar, D. Glaab, and H. G. Roskos, “Rational design of high-responsivity detectors of terahertz radiation based on distributed self-mixing in silicon field-effect transistors,” J. Appl. Phys. 105, 114511 (2009). [CrossRef]
  11. S. Kim, J. D. Zimmerman, P. Focardi, A. C. Gossard, D. H. Wu, and M. S. Sherwin, “Room temperature terahertz detection based on bulk plasmons in antenna-coupled GaAs field effect transistors,” Appl. Phys. Lett. 92, 253508 (2008). [CrossRef]
  12. I. S. Gregory, W. R. Tribe, B. E. Cole, C. Baker, M. J. Evans, I. V. Bradley, E. H. Linfield, A. G. Davies, and M. Missous, “Phase sensitive continuous-wave THz imaging using diode lasers,” Electron. Lett. 40, 143–145 (2004). [CrossRef]
  13. J. E. Bjarnason and E. R. Brown, “Sensitivity measurement and analysis of an ErAs:GaAs coherent photomixing transceiver,” Appl. Phys. Lett. 87, 134105 (2005). [CrossRef]
  14. S. Verghese, K. A. McIntosh, S. Calawa, W. F. Dinatale, E. K. Duerr, and K. A. Molvar, “Generation and detection of coherent terahertz waves using two photomixers,” Appl. Phys. Lett. 73, 3824–3826 (1998). [CrossRef]
  15. I. S. Gregory, M. J. Evans, H. Page, S. Malik, I. Farrer, and H. E. Beere, “Analysis of photomixer receiver for continuous-wave terahertz radiation,” Appl. Phys. Lett. 91, 154103 (2007). [CrossRef]
  16. S. Matsuura, “Photomixer as a self-oscillating mixer,” in Proceedings of the Twelfth International Symposium on Space Terahertz Technology, I. Mehdi, ed. (NASA Jet Propulstion Laboratory, 2001), pp. 234–243.
  17. K. Su, Z. Liu, R. B. Barat, D. E. Gray, Z.-H. Michalopoulou, and J. F. Federici, “Two-dimensional interferometric and synthetic aperture imaging with a hybrid terahertz/millimeter wave system,” Appl. Opt. 49, E13–E19 (2010). [CrossRef]
  18. A. Eshaghi, M. Shahabadi, and L. Chrostowski, “Radiation characteristics of large-area photomixer used for generation of continuous-wave terahertz radiation,” J. Opt. Soc. Am. B 29, 813–817 (2012). [CrossRef]
  19. F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91, 081109 (2007). [CrossRef]
  20. K. B. Cooper, R. J. Dengler, N. Llombart, T. Bryllert, G. Chattopadhyay, E. Schlecht, J. Gill, C. Lee, A. Skalare, I. Mehdi, and P. H. Siegel, “Penetrating 3-D imaging at 4- and 25  m range using a submillimeter-wave radar,” IEEE Trans. Microwave Theor. Tech. 56, 2771–2778 (2008). [CrossRef]
  21. C. am Weg, W. von Spiegel, R. Henneberger, R. Zimmermann, T. Loeffler, and H. Roskos, “Fast active THz cameras with ranging capabilities,” J. Infrared Millimeter Terahertz Waves 30, 1281–1296 (2009).
  22. D. Saeedkia, R. R. Mansour, and S. Safavi-Naeini, “Analysis and design of a continuous-wave terahertz photoconductive photomixer array source,” IEEE Trans. Antennas Propag. 53, 4044–4050 (2005). [CrossRef]
  23. S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millimeter Terahertz Waves 33, 431–454 (2012). [CrossRef]
  24. S. Gupta, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276–3278 (1991). [CrossRef]
  25. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86, 121114 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited