OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3259–3270

Photonic generation of high-frequency microwave signals utilizing a multi-transverse-mode vertical-cavity surface-emitting laser subject to two-frequency orthogonal optical injection

Ana Quirce, Angel Valle, Hong Lin, David W. Pierce, and Yu Zhang  »View Author Affiliations


JOSA B, Vol. 29, Issue 12, pp. 3259-3270 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003259


View Full Text Article

Enhanced HTML    Acrobat PDF (1900 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study photonic microwave signal generation obtained when single- and multi-transverse-mode vertical-cavity surface-emitting lasers (VCSELs) are subject to two-frequency orthogonal optical injection. Our calculations show that broadly tunable microwave signals can be obtained in these systems. The response of the multi-transverse-mode VCSEL is enhanced with respect to that obtained with a similar single-transverse-mode VCSEL subject to the same two-frequency orthogonal optical injection. The extra degree of freedom given by the multi-transverse-mode operation of the VCSEL under two-frequency orthogonal optical injection enhances the performance of the photonic microwave generation system, because the higher-order transverse mode is excited with a much larger amplitude than that of the fundamental transverse mode. Periodic oscillations are obtained for a very wide range of frequency detunings between the optical injections and transverse modes. A relative maximum of the microwave signal amplitude is obtained when the frequency of one of the optical injections is very close to the frequency of the orthogonally polarized fundamental mode of the VCSEL. Periodic oscillations are demonstrated for symmetric and asymmetric values of the injection strengths. Wide tuning ranges, extended into the THz band, are obtained in our system. Our results show that the proposed microwave signal generation mechanism is independent of the polarization of the master lasers.

© 2012 Optical Society of America

OCIS Codes
(140.3520) Lasers and laser optics : Lasers, injection-locked
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.7260) Optoelectronics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 12, 2012
Revised Manuscript: October 5, 2012
Manuscript Accepted: October 9, 2012
Published: November 8, 2012

Citation
Ana Quirce, Angel Valle, Hong Lin, David W. Pierce, and Yu Zhang, "Photonic generation of high-frequency microwave signals utilizing a multi-transverse-mode vertical-cavity surface-emitting laser subject to two-frequency orthogonaloptical injection," J. Opt. Soc. Am. B 29, 3259-3270 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-12-3259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Ohtsubo, Semiconductor Lasers: Stability, Instability and Chaos, Springer Series in Optical Sciences (Springer, 2007).
  2. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24, 4502–4513 (2006). [CrossRef]
  3. C. H. Chang, L. Chrostowski, and C. J. Chang-Hasnain, “Injection locking of VCSELs,” IEEE J. Sel. Top. Quantum Electron. 9, 1386–1393 (2003). [CrossRef]
  4. D. Parekh, X. Zhao, W. Hofmann, M. C. Amann, L. A. Zenteno, and C. J. Chang-Hasnain, “Greatly enhanced modulation response of injection-locked multimode VCSELs,” Opt. Express 16, 21582–21586 (2008). [CrossRef]
  5. H. Li, T. Lucas, J. G. McInerney, M. Wright, and R. A. Morgan, “Injection locking dynamics of vertical cavity semiconductor lasers under conventional and phase conjugate injection,” IEEE J. Quantum Electron. 32, 227–235 (1996). [CrossRef]
  6. Z. G. Pan, S. Jiang, M. Dagenais, R. A. Morgan, K. Kojima, M. T. Asom, and R. E. Leibenguth, “Optical injection induced polarization bistability in vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 63, 2999–3001 (1993). [CrossRef]
  7. Y. Hong, K. A. Shore, A. Larsson, M. Ghisoni, and J. Halonen, “Pure frequency-polarisation bistability in vertical-cavity surface-emitting lasers subject to optical injection,” Electron. Lett. 36, 2019–2020 (2000). [CrossRef]
  8. J. Buesa, I. Gatare, K. Panajotov, H. Thienpont, and M. Sciamanna, “Mapping of the dynamics induced by orthogonal optical injection in vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 42, 198–207 (2006). [CrossRef]
  9. K. Panajotov, I. Gatare, A. Valle, H. Thienpont, and M. Sciamanna, “Polarization- and transverse-mode dynamics in optically injected and gain-switched vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 45, 1473–1481 (2009). [CrossRef]
  10. A. Valle, M. Gomez-Molina, and L. Pesquera, “Polarization bistability in 1550 nm wavelength single-mode vertical-cavity surface-emitting lasers subject to orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 14, 895–902 (2008). [CrossRef]
  11. A. Hurtado, I. D. Henning, and M. J. Adams, “Two-wavelength switching with a 1550 nm VCSEL under single orthogonal optical injection,” IEEE J. Sel. Top. Quantum Electron. 14, 911–917 (2008). [CrossRef]
  12. K. H. Jeong, K. H. Kim, S. H. Lee, M. H. Lee, B. S. Yoo, and K. A. Shore, “Optical injection-induced polarization switching dynamics in 1.5 μm wavelength single-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 20, 779–781 (2008). [CrossRef]
  13. A. Valle, I. Gatare, K. Panajotov, and M. Sciamanna, “Transverse mode switching and locking in vertical-cavity surface-emitting lasers subject to orthogonal optical injection,” IEEE J. Quantum Electron. 43, 322–333 (2007). [CrossRef]
  14. A. Quirce, J. R. Cuesta, A. Valle, A. Hurtado, L. Pesquera, and M. J. Adams, “Polarization bistability induced by orthogonal optical injection in 1550 nm multimode VCSELs,” IEEE J. Sel. Top. Quantum Electron. 18, 772–778 (2012). [CrossRef]
  15. H. Lin, Y. Zhang, D. W. Pierce, A. Quirce, and A. Valle, “Polarization dynamics of a multimode vertical-cavity surface-emitting laser subject to orthogonal optical injection,” J. Opt. Soc. Am. B 29, 867–873 (2012). [CrossRef]
  16. C. J. Chang-Hasnain, J. P. Harbison, G. Hasnain, A. C. Von Lehmen, L. T. Florez, and N. G. Stoffel, “Dynamic, polarization and transverse mode characteristics of vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 27, 1402–1409 (1991). [CrossRef]
  17. A. Valle, J. Sarma, and K. A. Shore, “Spatial holeburning effects on the dynamics of vertical cavity surface-emitting laser diodes,” IEEE J. Quantum Electron. 31, 1423–1431 (1995). [CrossRef]
  18. K. D. Choquette, R. P. Schneider, K. L. Lear, and R. E. Leibenguth, “Gain-dependent polarization properties of vertical-cavity lasers,” IEEE J. Sel. Top. Quantum Electron. 1, 661–666 (1995). [CrossRef]
  19. A. Hayat, A. Bacou, A. Rissons, J. C. Mollier, V. Iakovlev, A. Sirbu, and E. Kapon, “Long-wavelength VCSEL-by-VCSEL optical injection locking,” IEEE Trans. Microwave Theory Tech. 57, 1850–1858 (2009). [CrossRef]
  20. H. Lin, D. W. Pierce, A. J. Basnet, A. Quirce, Y. Zhang, and A. Valle, “Two-frequency injection on a multimode vertical-cavity surface-emitting laser,” Opt. Express 19, 22437–22442 (2011). [CrossRef]
  21. S. C. Chan, R. Diaz, and J. M. Liu, “Novel photonic applications of nonlinear semiconductor laser dynamics,” Opt. Quantum Electron. 40, 83–95 (2008). [CrossRef]
  22. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over fiber transmission from an optically injected semiconductor laser in period-one state,” Opt. Express 15, 14921–14935 (2007). [CrossRef]
  23. X. Q. Qi and J. M. Liu, “Photonic microwave applications of the dynamics of semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 17, 1198–1211 (2011). [CrossRef]
  24. S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE J. Quantum Electron. 46, 421–428 (2010). [CrossRef]
  25. S. C. Chan, S. K. Hwang, and J. M. Liu, “Radio-over-fiber AM-to-FM upconversion using an optically injected semiconductor laser,” Opt. Lett. 31, 2254–2256 (2006). [CrossRef]
  26. C. Cui and S. C. Chan, “Performance analysis on using period-one oscillation of optically injected semiconductor lasers for radio-over-fiber uplinks,” IEEE J. Quantum Electron. 48, 490–499 (2012). [CrossRef]
  27. X. Q. Qi and J. M. Liu, “Dynamic scenarios of dual-beam optically injected semiconductor lasers,” IEEE J. Quantum Electron. 47, 762–769 (2011). [CrossRef]
  28. Y. S. Juan and F. Y. Lin, “Photonic generation of broadly tunable microwave signals utilizing a dual-beam optically injected semiconductor laser,” IEEE Photon. J. 3, 644–650 (2011). [CrossRef]
  29. Y. C. Chen, Y. S. Juan, and F. Y. Lin, “High-frequency microwave signal generation in a semiconductor laser under double injection locking,” Proc. SPIE 7936, 793609 (2011). [CrossRef]
  30. A. Quirce and A. Valle, “High-frequency microwave signal generation using multi-transverse mode VCSELs subject to two-frequency optical injection,” Opt. Express 20, 13390–13401(2012). [CrossRef]
  31. A. Valle, K. A. Shore, and L. Pesquera, “Polarization selection in birefringent vertical cavity surface emitting lasers,” J. Lightwave Technol. 14, 2062–2068 (1996). [CrossRef]
  32. G. H. M. Van Tartwijk and D. Lenstra, “Semiconductor lasers with optical injection and feedback,” Quantum Semiclass. Opt. 7, 87–143 (1995). [CrossRef]
  33. I. Gatare, M. Sciamanna, M. Nizette, and K. Panajotov, “Bifurcation to polarization switching and locking in vertical-cavity surface-emitting lasers with optical injection,” Phys. Rev. A 76, 031803(R) (2007). [CrossRef]
  34. J. Dellunde, A. Valle, L. Pesquera, and K. A. Shore, “Transverse-mode selection and noise properties of external-cavity surface-emitting lasers including multiple reflection effects,” J. Opt. Soc. Am. B 16, 2131–2139 (1999). [CrossRef]
  35. A. Valle and L. Pesquera, “Relative intensity noise of multitransverse-mode vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 13, 272–274 (2001). [CrossRef]
  36. A. Valle and L. Pesquera, “Theoretical calculation of relative intensity noise of multimode vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 40, 597–606 (2004). [CrossRef]
  37. J. Javaloyes and S. Balle, “Quasiequilibrium time-domain susceptibility of semiconductor quantum wells,” Phys. Rev. A 81, 062505 (2010). [CrossRef]
  38. A. Valle, H. Lin, Z. J. Lapin, and B. Malla, “Analysis of the polarization dynamics in a multitransverse-mode vertical-cavity surface-emitting laser with isotropic optical feedback,” Phys. Rev. A 78, 033828 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited