OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3299–3306

Precise localization of a two-level atom by the superposition of two standing-wave fields

Bibhas Kumar Dutta, Pradipta Panchadhyayee, and Prasanta Kumar Mahapatra  »View Author Affiliations


JOSA B, Vol. 29, Issue 12, pp. 3299-3306 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003299


View Full Text Article

Acrobat PDF (411 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A scheme is proposed to achieve one-dimensional localization of a two-level atom moving through a standing wave regime constructed by two classical standing-wave fields. Precise position information of the atom can be obtained by measuring resonant absorption of a weak coherent field probing the transition strongly driven by the resonant standing-wave fields. Behavior of atomic localization has been shown for symmetric superposition of the standing-wave fields arranged in two distinct configurations: (i) parallel and (ii) cross. In the cross-configuration, we have shown 100% detection probability of the atom within one wavelength range with the evolution of single localization peak in the sub-half-wavelength range due to the variation of spatial phase shift of one of the standing-wave fields. In case of nonresonant coupling of the atom with the standing-wave fields, a single localization peak in the sub-half-wavelength range can be obtained by changing the relative detuning of frequency of the probe field. For achieving high resolution single-peak localization of a two-level atom, the present scheme would be of great interest from the experimental point of view.

© 2012 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(270.1670) Quantum optics : Coherent optical effects

ToC Category:
Quantum Optics

History
Original Manuscript: June 11, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: September 28, 2012
Published: November 16, 2012

Citation
Bibhas Kumar Dutta, Pradipta Panchadhyayee, and Prasanta Kumar Mahapatra, "Precise localization of a two-level atom by the superposition of two standing-wave fields," J. Opt. Soc. Am. B 29, 3299-3306 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-12-3299


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. W. Heisenberg, “The actual content of quantum theoretical kinematics and mechanics,” Z. Phys. 43, 172–198 (1927). [CrossRef]
  2. P. Storey, M. Collett, and D. F. Walls, “Measurement-induced diffraction and interference of atoms,” Phys. Rev. Lett. 68, 472–475 (1992). [CrossRef]
  3. M. A. M. Marte and P. Zoller, “Quantum nondemolition measurement of transverse atomic position in Kapitza-Dirac atomic beam scattering,” Appl. Phys. B 54, 477–485 (1992). [CrossRef]
  4. P. Storey, M. Collett, and D. F. Walls, “Atom-position resolution by quadrature-field measurement,” Phys. Rev. A 47, 405–418 (1993). [CrossRef]
  5. J. R. Gardner, M. Marable, G. R. Welch, and J. E. Thomas, “Suboptical wavelength position measurement of moving atoms using optical fields,” Phys. Rev. Lett. 70, 3404–3407 (1993). [CrossRef]
  6. S. Kunze, G. Rempe, and M. Wilkens, “Atomic-position measurement via internal-state encoding,” Europhys. Lett. 27, 115–121 (1994). [CrossRef]
  7. R. Quadt, M. Collett, and D. F. Walls, “Measurement of atomic motion in a standing light field by homodyne detection,” Phys. Rev. Lett. 74, 351–354 (1995). [CrossRef]
  8. S. Kunze, K. Dieckmann, and G. Rempe, “Diffraction of atoms from a measurement induced grating,” Phys. Rev. Lett. 78, 2038–2041 (1997). [CrossRef]
  9. F. L. Kien, G. Rempe, W. P. Schleich, and M. S. Zubairy, “Atom localization via Ramsey interferometry: a coherent cavity field provides a better resolution,” Phys. Rev. A 56, 2972–2977 (1997). [CrossRef]
  10. H. Nha, J. -H. Lee, J. -S. Chang, and K. An, “Atomic-position localization via dual measurement,” Phys. Rev. A 65, 033827 (2002). [CrossRef]
  11. J. -T. Chang, J. Evers, M. O. Scully, and M. S. Zubairy, “Measurement of the separation between atoms beyond diffraction limit,” Phys. Rev. A 73, 031803 (2006). [CrossRef]
  12. A. M. Herkomer, W. P. Schleich, and M. S. Zubairy, “Autler-Townes microscopy on a single atom,” J. Mod. Opt. 44, 2507–2513 (1997). [CrossRef]
  13. S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Precision localization of single atom using AutlerTownes microscopy,” Opt. Commun. 176, 409–416 (2000). [CrossRef]
  14. S. Qamar, S. Y. Zhu, and M. S. Zubairy, “Atom localization via resonance fluorescence,” Phys. Rev. A 61, 063806 (2000). [CrossRef]
  15. E. Paspalakis and P. L. Knight, “Localizing an atom via quantum interference,” Phys. Rev. A 63, 065802 (2001). [CrossRef]
  16. F. Ghafoor, S. Qamar, and M. S. Zubairy, “Atom localization via phase and amplitude control of the driving field,” Phys. Rev. A 65, 043819 (2002). [CrossRef]
  17. T. Azim, M. Ikram, and M. S. Zubairy, “Sub-wavelength atom localization via Autler-Townes spectroscopy: effect of the quantized field,” J. Opt. B: Quantum Semiclass. Opt. 6, 248–255 (2004). [CrossRef]
  18. M. Sahrai, H. Tajalli, K. T. Kapale, and M. S. Zubairy, “Subwavelength atom localization via amplitude and phase control of the absorption spectrum,” Phys. Rev. A 72, 013820 (2005). [CrossRef]
  19. E. Paspalakis, A. F. Terzis, and P. L. Knight, “Quantum interference induced sub- wavelength atomic localization,” J. Mod. Opt. 52, 1685 (2005). [CrossRef]
  20. C. Liu, S. Q. Gong, D. Cheng, X. Fan, and Z. Xu, “Atom localization via interference of dark resonances,” Phys. Rev. A 73, 025801 (2006). [CrossRef]
  21. G. S. Agarwal and K. T. Kapale, “Subwavelength atom localization via coherent population trapping,” J. Phys. B 39, 3437–3446 (2006). [CrossRef]
  22. D. -C. Cheng, Y. -P. Niu, R. -X. Li, and S. Q. Gong, “Controllable atom localization via double-dark resonances in a tripod system,” J. Opt. Soc. Am. B 23, 2180–2184 (2006). [CrossRef]
  23. K. T. Kapale and M. S. Zubairy, “Subwavelength atom localization via amplitude and phase control of the absorption spectrum II,” Phys. Rev. A 73, 023813 (2006). [CrossRef]
  24. M. Sahrai, M. Mahmoudi, and R. Kheradmand, “Atom localization of a two-level pump-probe system via the absorption spectrum,” Laser Phys. 17, 40–44 (2007). [CrossRef]
  25. J. Xu and X. -M. Hu, “Localization of a two-level atom via the absorption spectrum,” Phys. Lett. A 364, 208–213 (2007). [CrossRef]
  26. L. Jin, H. Sun, Y. Niu, and S. Q. Gong, “Sub-half-wavelength atom localization via two standing-wave fields,” J. Phys. B 41, 085508 (2008). [CrossRef]
  27. S. Qamar, A. Mehmood, and Sh. Qamar, “Subwavelength atom localization via coherent manipulation of the Raman gain process,” Phys. Rev. A 79, 033848 (2009). [CrossRef]
  28. Z. Wang and J. Jiang, “Sub-half-wavelength atom localization via probe absorption spectrum in a four-level atomic system,” Phys. Lett. A 374, 4853–4858 (2010). [CrossRef]
  29. N. A. Proite, Z. J. Simmons, and D. D. Yavuz, “Observation of atomic localization using electromagnetically induced transparency,” Phys. Rev. A 83, 041803(R) (2011). [CrossRef]
  30. F. Ghafoor, “Subwavelength atom localization via quantum coherence in a three-level atomic system,” Phys. Rev. A 84, 063849 (2011). [CrossRef]
  31. S. Yang, M. A. -Amri, and M. S. Zubairy, “Single-atom localization via resonance- fluorescence photon statistics,” Phys. Rev. A 85, 023831 (2012). [CrossRef]
  32. L. Jin, H. Sun, Y. Niu, S. Jin, and S. Q. Gong, “Two-dimension atom nano-lithograph via atom localization,” J. Mod. Opt. 56, 805–810 (2009). [CrossRef]
  33. V. Ivanov and Y. Rozhdestvensky, “Two-dimensional atom localization in a four-level tripod system in laser fields,” Phys. Rev. A 81, 033809 (2010). [CrossRef]
  34. C. Ding, J. H. Li, X. Yang, Z. Zhan, and J. -B. Liu, “Two-dimensional atom localization via a coherence-controlled absorption spectrum in an N-tripod-type five-level atomic system,” J. Phys. B 44, 145501 (2011). [CrossRef]
  35. C. Ding, J. H. Li, Z. Zhan, and X. Yang, “Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system,” Phys. Rev. A 83, 063834 (2011). [CrossRef]
  36. C. Ding, J. H. Li, X. Yang, D. Zhang, and H. Xiong, “Proposal for efficient two- dimensional atom localization using probe absorption in a microwave-driven four-level atomic system,” Phys. Rev. A 84, 043840 (2011). [CrossRef]
  37. R. -G. Wan, J. Kou, L. Jiang, and J. -Y. Gao, “Two-dimensional atom localization via controlled spontaneous emission from a driven tripod system,” J. Opt. Soc. Am. B 28, 10–17 (2011). [CrossRef]
  38. R. -G. Wan, J. Kou, L. Jiang, and J. -Y. Gao, “Two-dimensional atom localization via quantum interference in a coherently driven inverted-Y system,” Opt. Commun. 284, 985–990 (2011). [CrossRef]
  39. R. -G. Wan and T. -Y. Zhang, “Two-dimensional sub-half-wavelength atom localization via controlled spontaneous emission,” Opt. Express 19, 25823–25832 (2011). [CrossRef]
  40. J. H. Li, R. Yu, M. Liu, C. Ding, and X. Yang, “Efficient two-dimensional atom localization via phasesensitive absorption spectrum in a radio-frequency-driven four-level atomic system,” Phys. Lett. A 375, 3978–3985 (2011). [CrossRef]
  41. Z. Wang, B. Yu, J. Zhu, Z. Cao, S. Zhen, X. Wu, and F. Xu, “Atom localization via controlled spontaneous emission in a five-level atomic system,” Ann. Phys. 327, 1132–1145 (2012). [CrossRef]
  42. E. Arimondo, in Progress in Optics, E. Wolf, ed. (Elsevier, 1996), Vol. 35.
  43. R. Blatt and P. Zoller, “Quantum jumps in atomic systems,” Eur. J. Phys. 9, 250–256 (1988). [CrossRef]
  44. E. Paspalakis, C. H. Keitel, and P. L. Knight, “Fluorescence control through multiple interference mechanisms,” Phys. Rev. A 58, 4868–4877 (1998). [CrossRef]
  45. J. E. Thomas and L. J. Wang, “Precision position measurement of moving atoms,” Phys. Rep. 262, 311–366 (1995). [CrossRef]
  46. K. S. Johnson, J. H. Thywissen, N. H. Dekker, K. K. Berggren, A. P. Chu, R. Younkin, and M. Prentiss, “Localization of metastable atom beams with optical standing waves: nanolithography at the Heisenberg limit,” Science 280, 1583–1586 (1998). [CrossRef]
  47. C. S. Adams, M. Seigel, and J. Mlynek, “Atom optics,” Phys. Rep. 240, 143–210 (1994). [CrossRef]
  48. B. K. Dutta and P. K. Mahapatra, “Electromagnetically induced grating in a three-level -type system driven by a strong standing wave pump and weak probe fields,” J. Phys. B 39, 1145–1157 (2006). [CrossRef]
  49. Z. -H. Xiao, S. G. Shin, and K. Kim, “An electromagnetically induced grating by microwave modulation,” J. Phys. B 43, 161004 (2010). [CrossRef]
  50. B. R. Mollow, “Stimulated emission and absorption near resonance for driven systems,” Phys. Rev. A 5, 2217–2222 (1972). [CrossRef]
  51. P. Meystre and M. Sergent, Elements of Quantum Optics, 3rd ed. (Springer-Verlag, 1999).
  52. T. Quang and H. Freedhoff, “Index of refraction of a system of strongly driven two-level atoms,” Phys. Rev. A 48, 3216–3218 (1993). [CrossRef]
  53. M. Lax, “Multitime correspondence between quantum and classical stochastic processes,” Phys. Rev. 172, 350–361 (1968). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited