OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3317–3324

Spectral response of nanocrystalline ZnO films embedded with Au nanoparticles

Anuradha Patra, A. Manivannan, and S. Kasiviswanathan  »View Author Affiliations


JOSA B, Vol. 29, Issue 12, pp. 3317-3324 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003317


View Full Text Article

Enhanced HTML    Acrobat PDF (3658 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The optical response of a two-phase composite consisting of Au nanoparticles (AuNPs) in a nanocrystalline ZnO thin film matrix has been systematically studied and analyzed by the Bergman–Milton spectral density formalism. The real and imaginary parts of the effective dielectric function exhibited anomalous dispersion and absorption, respectively, at the characteristic localized surface plasmon resonance (LSPR) wavelength. A multilayer structure consisting of two AuNP–ZnO composite films separated by a thin ZnO film displayed a twofold increase in the absorption at LSPR (with negligible change in FWHM), which is attributed to the increase in the number density of the AuNPs resulting from the nanocrystalline nature of the ZnO film. The results have been used to correlate the spectral density function to the morphology of AuNPs in a ZnO matrix.

© 2012 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(310.6860) Thin films : Thin films, optical properties
(160.4236) Materials : Nanomaterials
(160.2710) Materials : Inhomogeneous optical media

ToC Category:
Materials

History
Original Manuscript: July 30, 2012
Revised Manuscript: October 6, 2012
Manuscript Accepted: October 6, 2012
Published: November 16, 2012

Citation
Anuradha Patra, A. Manivannan, and S. Kasiviswanathan, "Spectral response of nanocrystalline ZnO films embedded with Au nanoparticles," J. Opt. Soc. Am. B 29, 3317-3324 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-12-3317


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111, 3828–3857 (2011). [CrossRef]
  3. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. K. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below diffraction limit in metal nanoparticles plasmon waveguides,” Nature Mater. 2, 229–232 (2003). [CrossRef]
  4. S. A. Maier, M. L. Brongersma, P. G. Kik, S. Meltzer, A. A. G. Requicha, B. E. Koel, and H. A. Atwater, “Plasmonics—a route to nanoscale optical devices,” Adv. Mater. 13, 1501–1505 (2001). [CrossRef]
  5. Y. Dirix, C. Bastiaansen, W. Caseri, and P. Smith, “Oriented pearl-necklace arrays of metallic nanoparticles in polymers: a new route towards polarization-dependent color filters,” Adv. Mater. 11, 223–227 (1999). [CrossRef]
  6. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi A 205, 2844–2861 (2008). [CrossRef]
  7. G. Piredda, D. D. Smith, B. Wendling, and R. W. Boyd, “Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient,” J. Opt. Soc. Am. B 25, 945–950 (2008). [CrossRef]
  8. V. M. Shalaev and A. K. Sarychev, “Nonlinear optics of random metal-dielectric films,” Phys. Rev. B 57, 13265–13288 (1998). [CrossRef]
  9. H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70, 1–3 (1997). [CrossRef]
  10. M. K. Hedayati, M. Javaherirahim, B. Mozooni, R. Abdelaziz, A. Tavassolizadeh, V. S. K. Chakravadhanula, V. Zaporojtchenko, T. Strunkus, F. Faupel, and M. Elbahri, “Design of a perfect black absorber at visible frequencies using plasmonics metamaterials,” Adv. Mater. 23, 5410–5414 (2011). [CrossRef]
  11. B. Houng, “Tin doped indium oxide transparent conducting thin films containing silver nanoparticles by sol-gel technique,” Appl. Phys. Lett. 87, 251922 (2005). [CrossRef]
  12. W. A. Murray and W. L. Barnes, “Plasmonic materials,” Adv. Mater. 19, 3771–3782 (2007). [CrossRef]
  13. V. Myroshnychenko, J. Rodrıguez-Fernandez, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzan, and F. J. Garcıa de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37, 1792–1805 (2008). [CrossRef]
  14. D. J. Bergman, “The dielectric constant of a composite material—a problem in classical physics,” Phys. Rep. 43, 377–407 (1978). [CrossRef]
  15. G. W. Milton, “Bounds on the effective permittivity of a two-component composite material,” J. Appl. Phys. 52, 5286–5293 (1981). [CrossRef]
  16. C. Liu and L. C. Shen, “Dielectric constant of two component, two-dimensional mixtures in terms of Bergman-Milton simple poles,” J. Appl. Phys. 73, 1897–1903 (1993). [CrossRef]
  17. C. Liu and H. Wu, “Computation of the effective dielectric constant of two-component, three-dimensional mixtures using a simple pole expansion method,” J. Appl. Phys. 82, 345–350 (1997). [CrossRef]
  18. D. J. Bergman, “Dielectric constant of a two-component granular composite: a practical scheme for calculating the pole spectrum,” Phys. Rev. B 19, 2359–2368 (1979). [CrossRef]
  19. D. Ross and R. Aroca, “Effective medium theories in surface enhanced infrared spectroscopy: the pentacene example,” J. Chem. Phys. 117, 8095–8103 (2002). [CrossRef]
  20. A. Patra, V. D. Das, and S. Kasiviswanathan, “Optical and photoluminescence studies of gold nanoparticles embedded ZnO thin films,” Thin Solid Films 518, 1399–1401 (2009). [CrossRef]
  21. W. Theiss, “Optical properties of porous silicon,” Surf. Sci. Rep. 29, 91–192 (1997). [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  23. E. Gorges, P. Grosse, J. Sturm, and W. Theiss, “A parameterization of the effective dielectric function of a two-phase composite medium,” Z. Phys. B: Condens. Matter 94, 223–226 (1994). [CrossRef]
  24. A. Paul and H. N. Acharya, “Equilibrium thermodynamics of nonstoichiometry in ZnO and aluminum doping of ZnO using aluminum chloride,” J. Mater. Sci. 27, 1716–1722 (1992). [CrossRef]
  25. H. Iwasaki, “Study on the ordered phases with long period in the gold-zinc alloy system, II. structure of Au3Zn[R1], Au3Zn[R2] and Au3+Zn,” J. Phys. Soc. Jpn. 17, 1620–1633 (1962). [CrossRef]
  26. W. H. Qi and M. P. Wang, “Size and shape dependent lattice parameters of metallic nanoparticles,” J. Nanopart. Res. 7, 51–57 (2005). [CrossRef]
  27. A. A. Georgobiani, A. N. Gruzintsev, V. T. Volkov, A. N. Pustovit, V. I. Demin, V. A. Dravin, and I. F. Gushchin, “Luminescence of ZnO films implanted with Au+ ions and annealed in oxygen radicals,” Bull. Lebedev Phys. Inst. 34, 159–163(2007). [CrossRef]
  28. J. Sancho-Parramon, V. Janicki, and H. Zorc, “On the dielectric function tuning of random metal-dielectric nanocomposites for metamaterial applications,” Opt. Express 18, 26915–26928 (2010). [CrossRef]
  29. J. Schmitt, G. Decher, W. J. Dressick, S. L. Brandow, R. E. Geer, R. Shashidhar, and J. M. Calvert, “Metal nanoparticles/polymer superlattice films: fabrication and control of layer structure,” Adv. Mater. 9, 61–65 (1997). [CrossRef]
  30. H. Liao, W. Lu, S. Yu, W. Wen, and G. K. L. Wong, “Optical characteristics of gold nanoparticle-doped multilayer thin film,” J. Opt. Soc. Am. B 22, 1923–1926 (2005). [CrossRef]
  31. K. H. Su, Q. H. Wei, and X. Zang, “Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks,” Appl. Phys. Lett. 88, 063118 (2006). [CrossRef]
  32. M. Elbahri, M. K. Hedayati, V. S. K. Chakravadhanula, M. Jamali, T. Strunkus, V. Zaporojtchenko, and F. Faupel, “An omnidirectional transparent conducting-metal based plasmonic nanocomposite,” Adv. Mater. 23, 1993–1997 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited