OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3344–3348

Cylindrical invisibility cloak based on photonic crystal layers that permits communication with the outside

Naoki Okada and James B. Cole  »View Author Affiliations

JOSA B, Vol. 29, Issue 12, pp. 3344-3348 (2012)

View Full Text Article

Enhanced HTML    Acrobat PDF (749 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Invisibility cloaks designed by transformation optics include a perfect shield, which exclude electromagnetic fields from the cloaked region. Due to the shield, observers inside the cloak cannot see the outside. We propose a cloak that permits communication with the outside, based on a layered photonic crystal (PC) structure. The PC acts as an effective shield in the reflection bandgap, leaving the transmission band available for communication with the outside. A procedure to design an infinitely long cylindrical cloak consisting of concentric layers of dielectric and metal is given. For the proposed structure, the performance of cloaking in the reflection band and of communication in the transmission band is computed.

© 2012 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(160.5298) Materials : Photonic crystals
(230.3205) Optical devices : Invisibility cloaks

ToC Category:

Original Manuscript: July 19, 2012
Revised Manuscript: September 20, 2012
Manuscript Accepted: October 10, 2012
Published: November 16, 2012

Naoki Okada and James B. Cole, "Cylindrical invisibility cloak based on photonic crystal layers that permits communication with the outside," J. Opt. Soc. Am. B 29, 3344-3348 (2012)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef]
  3. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009). [CrossRef]
  4. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef]
  5. S. A. Cummer, B. L. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006). [CrossRef]
  6. Y. Zhao, C. Argyropoulos, and Y. Hao, “Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures,” Opt. Express 16, 6717–6730 (2008). [CrossRef]
  7. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1, 224–227 (2007). [CrossRef]
  8. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, and G. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]
  9. Y. Huang, Y. Feng, and T. Jiang, “Electromagnetic cloaking by layered structure of homogeneous isotropic materials,” Opt. Express 15, 11133–11141 (2007). [CrossRef]
  10. Z. Yu, Y. Feng, X. Xu, J. Zhao, and T. Jiang, “Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials,” J. Phys. D 44, 185102 (2011). [CrossRef]
  11. T. J. Cui, D. R. Smith, and R. Liu, Metamaterials: Theory, Design, and Applications, 1st ed. (Springer-Verlag, 2009).
  12. W. Yan, M. Yan, Z. Ruan, and M. Qiu, “Influence of geometrical perturbation at inner boundaries of invisibility cloaks,” Nat. Photonics 25, 968–973 (2008). [CrossRef]
  13. C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17, 8467–8475 (2009). [CrossRef]
  14. P. Yao, Z. Liang, and X. Jiang, “Limitation of the electromagnetic cloak with dispersive material,” Appl. Phys. Lett. 92, 031111 (2008). [CrossRef]
  15. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (Cambridge University, 1999).
  16. H. Ma, S. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009). [CrossRef]
  17. H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16, 14603–14608 (2008). [CrossRef]
  18. C. Argyropoulos, P. Y. Chen, F. Monticone, G. D’Aguanno, and A. Alu, “Nonlinear plasmonic cloaks to realize giant all-optical scattering switching,” Phys. Rev. Lett. 108, 263905 (2012). [CrossRef]
  19. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8, 568–571 (2009). [CrossRef]
  20. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009). [CrossRef]
  21. A. Yaroslav and D. R. Smith, “Transformation optics with photonic band gap media,” Phys. Rev. Lett. 105, 163901 (2010). [CrossRef]
  22. H. Gao, B. Zhang, and G. Barbastathis, “Photonic cloak made of subwavelength dielectric elliptical rod arrays,” Opt. Commun. 284, 4820–4823 (2011). [CrossRef]
  23. M. Farhat, S. Guenneau, A. B. Movchan, and S. Enoch, “Achieving invisibility over a finite range of frequencies,” Opt. Express 16, 5656–5661 (2008). [CrossRef]
  24. S. Guenneau, R. C. McPhedran, S. Enoch, A. B. Movchan, M. Farhat, and N. A. P. Nicorovici, “The colours of cloaks,” J. Opt. 13, 024014 (2011). [CrossRef]
  25. V. N. Smolyaninova, I. I. Smolyaninov, and H. K. Ermer, “Experimental demonstration of a broadband array of invisibility cloaks in the visible frequency range,” New J. Phys. 14, 053029(2012). [CrossRef]
  26. B. Wood and J. B. Pendry, “Directed subwavelength imaging using a layered metaldielectric system,” Phys. Rev. B 74, 115116 (2006). [CrossRef]
  27. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, 1990).
  28. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2037 KB)     
» Media 2: MOV (3317 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited