OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 29, Iss. 12 — Dec. 1, 2012
  • pp: 3349–3354

Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators

Chuan Wang, Yong Zhang, Guang-Sheng Jin, and Ru Zhang  »View Author Affiliations


JOSA B, Vol. 29, Issue 12, pp. 3349-3354 (2012)
http://dx.doi.org/10.1364/JOSAB.29.003349


View Full Text Article

Enhanced HTML    Acrobat PDF (468 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate a candidate for the potential implementation of entanglement purification of two entangled nitrogen vacancy (N-V) centers that are coupled with two microtoroidal resonators. In our proposed entanglement purification protocol (EPP), mixed entangled ensembles can be purified with the local parity-check operations. With current and near-future technology, we can achieve the maximally entangled N-V centers nonlocally. And our EPP can be used in quantum repeaters for long-distance quantum communication.

© 2012 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5568) Quantum optics : Quantum cryptography
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: September 7, 2012
Revised Manuscript: October 11, 2012
Manuscript Accepted: October 19, 2012
Published: November 19, 2012

Citation
Chuan Wang, Yong Zhang, Guang-Sheng Jin, and Ru Zhang, "Efficient entanglement purification of separate nitrogen-vacancy centers via coupling to microtoroidal resonators," J. Opt. Soc. Am. B 29, 3349-3354 (2012)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-29-12-3349


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. K. Ekert, “Quantum cryptography based on Bells theorem,” Phys. Rev. Lett. 67, 661–663 (1991). [CrossRef]
  2. G. L. Long and X. S. Liu, “Theoretically efficient high-capacity quantum-key-distribution scheme,” Phys. Rev. A 65, 032302 (2002). [CrossRef]
  3. F. G. Deng and G. L. Long, “Controlled order rearrangement encryption for quantum key distribution,” Phys. Rev. A 68, 042315 (2003). [CrossRef]
  4. X. H. Li, F. G. Deng, and H. Y. Zhou, “Efficient quantum key distribution over a collective noise channel,” Phys. Rev. A 78, 022321 (2008). [CrossRef]
  5. H. J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998). [CrossRef]
  6. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414, 413–418 (2001). [CrossRef]
  7. Z. B. Chen, B. Zhao, Y. -A. Chen, J. Schmiedmayer, and J. W. Pan, “Fault-tolerant quantum repeater with atomic ensembles and linear optics,” Phys. Rev. A 76, 022329 (2007). [CrossRef]
  8. B. Zhao, Z. B. Chen, Y. -A. Chen, J. Schmiedmayer, and J. W. Pan, “Robust creation of entanglement between remote memory qubits,” Phys. Rev. Lett. 98, 240502 (2007). [CrossRef]
  9. F. Y. Hong and S. J. Xiong, “Robust quantum repeater with atomic ensembles and single-photon sources,” Phys. Rev. A 79, 052341 (2009). [CrossRef]
  10. Z. Q. Yin, Y. B. Zhao, Y. Yang, Z. -F. Han, and G. C. Guo, “Quantum repeaters free of polarization disturbance and phase noise,” Phys. Rev. A 79, 044302 (2009). [CrossRef]
  11. M. Gao, L. M. Liang, C. Z. Li, and X. B. Wang, “Robust quantum repeater with atomic ensembles against phase and polarization instability,” Phys. Rev. A 79, 042301 (2009). [CrossRef]
  12. B. B. Zhang and Y. Q. Xu, “Atomic-ensemble-based quantum repeater against general polarization and phase noise,” Phys. Rev. A 84, 014304 (2011). [CrossRef]
  13. T. J. Wang, S. Y. Song, and G. L. Long, “Quantum repeater based on spatial entanglement of photons and quantum-dot spins in optical microcavities,” Phys. Rev. A 85, 062311 (2012). [CrossRef]
  14. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76, 722–725 (1996). [CrossRef]
  15. D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sanpera, “Quantum privacy amplification and the security of quantum cryptography over noisy channels,” Phys. Rev. Lett. 77, 2818–2821 (1996). [CrossRef]
  16. J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410, 1067–1070 (2001). [CrossRef]
  17. J. W. Pan, S. Gasparonl, R. Ursin, G. Weihs, and A. Zellinger, “Experimental entanglement purification of arbitrary unknown states,” Nature 423, 417–422 (2003). [CrossRef]
  18. Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Efficient polarization-entanglement purification based on parametric down-conversion sources with cross-Kerr nonlinearity,” Phys. Rev. A 77, 042308 (2008). [CrossRef]
  19. L. Xiao, C. Wang, W. Zhang, Y. D. Huang, J. D. Peng, and G. L. Long, “Efficient strategy for sharing entanglement via noisy channels with doubly entangled photon pairs,” Phys. Rev. A 77, 042315 (2008). [CrossRef]
  20. Y. B. Sheng and F. G. Deng, “Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement,” Phys. Rev. A 81, 032307 (2010). [CrossRef]
  21. Y. B. Sheng and F. G. Deng, “One-step deterministic polarization-entanglement purification using spatial entanglement,” Phys. Rev. A 82, 044305 (2010). [CrossRef]
  22. F. G. Deng, “One-step error correction for multipartite polarization entanglement,” Phys. Rev. A 83, 062316 (2011). [CrossRef]
  23. Y. B. Sheng, G. L. Long, and F. G. Deng, “One-step deterministic multipartite entanglement purification with linear optics,” Phys. Lett. A 376, 314C319 (2012). [CrossRef]
  24. C. Simon and J. W. Pan, “Polarization entanglement purification using spatial entanglement,” Phys. Rev. Lett. 89, 257901(2002). [CrossRef]
  25. M. Murao, M. B. Plenio, S. Popescu, V. Vedral, and P. L. Knight, “Multiparticle entanglement purification protocols,” Phys. Rev. A 57, R4075–R4078 (1998). [CrossRef]
  26. Y. B. Sheng, F. G. Deng, B. K. Zhao, T. J. Wang, and H. Y. Zhou, “Multipartite entanglement purification with quantum nondemolition detectors,” Eur. Phys. J. D 55, 235–242 (2009). [CrossRef]
  27. F. G. Deng, “Efficient multipartite entanglement purification with the entanglement link from a subspace,” Phys. Rev. A 84, 052312 (2011). [CrossRef]
  28. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nat. Phys. 2, 408–413 (2006). [CrossRef]
  29. W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12, 113039 (2010). [CrossRef]
  30. W. L. Yang, Z. Q. Yin, Y. Hu, M. Feng, and J. F. Du, “High-fidelity quantum memory using nitrogen-vacancy center ensemble for hybrid quantum computation,” Phys. Rev. A 84, 010301(R) (2011).
  31. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008). [CrossRef]
  32. Q. Chen, W. L. Yang, M. Fang, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011). [CrossRef]
  33. P. B. Li, S. Y. Gao, and F. L. Li, “Quantum-information transfer with nitrogen-vacancy centers coupled to a whispering-gallery microresonator,” Phys. Rev. A 83, 054306 (2011). [CrossRef]
  34. L. Jiang, J. S. Hodges, J. R. Maze, P. Maurer, J. M. Taylor, D. G. Cory, P. R. Hemmer, R. L. Walsworth, A. Yacoby, A. S. Zibrov, and M. D. Lukin, “Repetitive readout of a single electronic spin via quantum logic with nuclear spin ancillae,” Science 326, 267–272 (2009). [CrossRef]
  35. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010). [CrossRef]
  36. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  37. D. M. Toyli, D. J. Christle, A. Alkauskas, B. B. Buckley, C. G. Van de Walle, and D. D. Awschalom, “Measurement and control of single nitrogen-vacancy center spins above 600 K,” Phys. Rev. X 2, 031001 (2012). [CrossRef]
  38. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6, 2075–2079 (2006). [CrossRef]
  39. P. E. Barclay, K. M. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” Appl. Phys. Lett. 95, 191115 (2009). [CrossRef]
  40. D. Englund, B. Shields, K. Rivoire, F. Hatami, J. Vuckovic, H. Park, and M. D. Lukin, “Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity,” Nano Lett. 10, 3922–3926 (2010). [CrossRef]
  41. P. E. Barclay, C. Santori C, K. M. Fu, R. G. Beausoleil, and O. Painter, “Coherent interference effects in a nano-assembled diamond NV center cavity-QED system,” Opt. Express 17, 8081–8097 (2009). [CrossRef]
  42. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008). [CrossRef]
  43. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8, 383–387 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited